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What Is Garbage Collection? 
At first sight, garbage collection should be dealing with what the name suggests – finding and throwing away 

the garbage. In reality it is doing exactly the opposite. Garbage Collection is tracking down all the objects that 

are still used, and marks the rest as garbage. Bearing this in mind, we start digging into more details of how the 

process of automated memory reclamation called ‘Garbage Collection’ is implemented for Java Virtual Machine. 

Instead of rushing into specifics, we shall start from the very beginning, explaining the general nature of garbage 

collection and the core concepts and approaches. 

Disclaimer: This handbook focuses on Oracle Hotspot and OpenJDK behavior. In other runtimes or even on 

other JVMs, such as jRockit or IBM J9, some of the aspects covered in this handbook can behave differently. 

Manual Memory Management 
Before we can start covering Garbage Collection in its modern form, let’s do a quick recap of days where you 

had to manually and explicitly allocate and free memory for your data. And if you ever forgot to free it, you would 

not be able to reuse the memory. The memory would be claimed but not used. Such a scenario is called 

a memory leak. 

Here is a simple example written in C using manual memory management: 

int send_request() { 

    size_t n = read_size(); 

    int *elements = malloc(n * sizeof(int)); 

 

    if(read_elements(n, elements) < n) { 

        // elements not freed! 

        return -1; 

    } 

 

    // … 

 

    free(elements) 

    return 0; 

} 

 

As we can see, it is fairly easy to forget to free memory. Memory leaks used to be a lot more common problem 

than today. You could only really fight them by fixing your code. Thus, a much better approach would be to 

automate the reclamation of unused memory, eliminating the possibility of human error altogether. Such 

automation is called Garbage Collection (or GC for short). 

Smart Pointers 

One of the first ways to automate garbage collection was built upon reference counting. For each object, you 

simply know how many times it is referred to and when that count reaches zero the object can be safely 

reclaimed. A well-known example of that would be the shared pointers of C++: 
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int send_request() { 

    size_t n = read_size(); 

    shared_ptr<vector<int>> elements  

              = make_shared<vector<int>>(); 

 

    if(read_elements(n, elements) < n) { 

        return -1; 

    } 

 

    return 0; 

} 

 

The shared_ptr that we are making use of keeps track of the number of references to it. This number increases 

as you pass it around and decreases as it leaves scope. As soon as the number of references reaches zero, 

the shared_ptr automatically deletes the underlying vector. Admittedly, this example is not exactly prevalent in 

the real world, but it is enough for demonstrational purposes. 

Automated Memory Management 
In the C++ code above, we still had to explicitly say when we want to have memory management to be taken 

care of. But what if we could make all the objects behave this way? That would be very handy, since the 

developers no longer have to think about cleaning up after themselves. The runtime will automatically 

understand that some memory is no longer used and frees it. In other words, it automatically collects the 

garbage. The first garbage collector was created in 1959 for Lisp and the technology has only advanced since 

then. 

Reference Counting 

The idea that we have demonstrated with the shared pointers of C++ can be applied to all objects. Many 

languages such as Perl, Python or PHP take this approach. This is best illustrated with a picture: 

 

The green clouds indicate that the object that they point to is still in use by the programmer. Technically, these 

may be things like a local variable in the currently executing method or a static variable or something else. It 

may vary from programming language to programming language so we will not focus on it here. 
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The blue circles are the live objects in memory, with the numbers inside denoting their reference counts. Finally, 

the grey circles are objects that are not referenced from any object that is still explicitly in use (these are directly 

referenced to by the green clouds). The grey objects are thus garbage and could be cleaned by the Garbage 

Collector. 

This all looks really good, does it not? Well, it does, but the whole method has a huge drawback. It is quite easy 

to end up with a detached cycle of objects none of which are in scope yet due to cyclic references the count of 

their reference is not zero. Here’s an illustration: 

 

See? The red objects are in fact garbage that the application does not use. But due to the limitations of reference 

counting there is still a memory leak. 

There are some ways to overcome this, such as using special ‘weak’ references or applying a separate algorithm 

for collecting cycles. The aforementioned languages – Perl, Python and PHP – all handle cycles in one way or 

another, but this is outside the scope of this handbook. Instead, we will start investigating the approach taken 

by the JVM in more details. 

Mark and Sweep 

First of all, the JVM is more specific about what constitutes reachability of an object. Instead of the vaguely 

defined green clouds that we saw on earlier chapters, we have a very specific and explicit set of objects that are 

called the Garbage Collection Roots: 

 Local variables 

 Active threads 

 Static fields 

 JNI references 

The method used by JVM to track down all the reachable (live) objects and to make sure the memory claimed 

by non-reachable objects can be reused is called the Mark and Sweep algorithm. It consists of two steps: 

 Marking is walking through all reachable objects starting from GC roots and keeping a ledger in native 

memory about all such objects 

 Sweeping is making sure the memory addresses occupied by non-reachable objects can be reused by the 

next allocations. 
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Different GC algorithms within the JVM, such as Parallel Scavenge, Parallel Mark+Copy or CMS, are 

implementing those phases slightly differently, but at the conceptual level the process remains similar to the two 

steps described above. 

A crucially important thing about this approach is that the cycles are no longer leaked: 

 

The not-so-good thing is that the application threads need to be stopped for the collection to happen, as you 

cannot really count references if they keep changing all the time. Such a situation when the application is 

temporarily stopped so that the JVM can indulge in housekeeping activities is called a Stop The World pause. 

They may happen for many reasons, but garbage collection is by far the most popular one. 

In this handbook, we will explain how Garbage Collection works in the JVM and how to get the best out of it. 
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Garbage Collection in Java 
The introduction to Mark and Sweep Garbage Collection is a mostly theoretical one. When things come to 

practice, numerous adjustments need to be done to accommodate for real-world scenarios and needs. For a 

simple example, let us take a look at what sorts of bookkeeping the JVM needs to do so that we can safely 

continue allocating objects. 

Fragmenting and Compacting 
Whenever sweeping takes place, the JVM has to make sure the areas filled with unreachable objects can be 

reused. This can (and eventually will) lead to memory fragmentation which, similarly to disk fragmentation, leads 

to two problems: 

 Write operations become more time-consuming as finding the next free block of sufficient size is no longer a 

trivial operation. 

 When creating new objects, JVM is allocating memory in contiguous blocks. So if fragmentation escalates to 

a point where no individual free fragment is large enough to accommodate the newly created object, an 

allocation error occurs. 

To avoid such problems, the JVM is making sure the fragmenting does not get out of hand. So instead of just 

marking and sweeping, a ‘memory defrag’ process also happens during garbage collection. This process 

relocates all the reachable objects next to each other, eliminating (or reducing) the fragmentation. Here is an 

illustration of that: 

 

Generational Hypothesis 
As we have mentioned before, doing a garbage collection entails stopping the application completely. It is also 

quite obvious that the more objects there are the longer it takes to collect all the garbage. But what if we would 

have a possibility to work with smaller memory regions? Investigating the possibilities, a group of researchers 

has observed that most allocations inside applications fall into two categories: 

 Most of the objects become unused quickly 

 The ones that do not usually survive for a (very) long time 
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These observations come together in the Weak Generational Hypothesis. Based on this hypothesis, the memory 

inside the VM is divided into what is called the Young Generation and the Old Generation. The latter is 

sometimes also called Tenured. 

 

Having such separate and individually cleanable areas allows for a multitude of different algorithms that have 

come a long way in improving the performance of the GC. 

This is not to say there are no issues with such an approach. For one, objects from different generations may in 

fact have references to each other that also count as ‘de facto’ GC roots when collecting a generation. 

But most importantly, the generational hypothesis may in fact not hold for some applications. Since the GC 

algorithms are optimized for objects which either ‘die young’ or ‘are likely to live forever’, the JVM behaves rather 

poorly with objects with ‘medium’ life expectancy. 

Memory Pools 
The following division of memory pools within the heap should be familiar. What is not so commonly understood 

is how Garbage Collection performs its duties within the different memory pools. Notice that in different GC 

algorithms some implementation details might vary but, again, the concepts in this chapter remain effectively 

the same. 
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Eden 

Eden is the region in memory where the objects are typically allocated when they are created. As there are 

typically multiple threads creating a lot of objects simultaneously, Eden is further divided into one or 

more Thread Local Allocation Buffer (TLAB for short) residing in the Eden space. These buffers allow the 

JVM to allocate most objects within one thread directly in the corresponding TLAB, avoiding the expensive 

synchronization with other threads. 

When allocation inside a TLAB is not possible (typically because there’s not enough room there), the allocation 

moves on to a shared Eden space. If there’s not enough room in there either, a garbage collection process in 

Young Generation is triggered to free up more space. If the garbage collection also does not result in sufficient 

free memory inside Eden, then the object is allocated in the Old Generation. 

When Eden is being collected, GC walks all the reachable objects from the roots and marks them as alive. 

We have previously noted that objects can have cross-generational links so a straightforward approach would 

have to check all the references from other generations to Eden. Doing so would unfortunately defeat the whole 

point of having generations in the first place. The JVM has a trick up its sleeve: card-marking. Essentially, the 

JVM just marks the rough location of ‘dirty’ objects in Eden that may have links to them from the Old Generation. 

You can read more on that in Nitsan’s blog entry. 

 

After the marking phase is completed, all the live objects in Eden are copied to one of the Survivor spaces. The 

whole Eden is now considered to be empty and can be reused to allocate more objects. Such an approach is 

called “Mark and Copy”: the live objects are marked, and then copied (not moved) to a survivor space. 

Survivor Spaces 

Next to the Eden space reside two Survivor spaces called from and to. It is important to notice that one of the 

two Survivor spaces is always empty. 

The empty Survivor space will start having residents next time the Young generation gets collected. All of the 

live objects from the whole of the Young generation (that includes both the Eden space and the non-empty ‘from’ 

Survivor space) are copied to the ‘to’ survivor space. After this process has completed, ‘to’ now contains objects 

and ‘from’ does not. Their roles are switched at this time. 

http://psy-lob-saw.blogspot.com/2014/10/the-jvm-write-barrier-card-marking.html
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This process of copying the live objects between the two Survivor spaces is repeated several times until some 

objects are considered to have matured and are ‘old enough’. Remember that, based on the generational 

hypothesis, objects which have survived for some time are expected to continue to be used for very long time. 

Such ‘tenured’ objects can thus be promoted to the Old Generation. When this happens, objects are not moved 

from one survivor space to another but instead to the Old space, where they will reside until they become 

unreachable. 

To determine whether the object is ‘old enough’ to be considered ready for propagation to Old space, GC tracks 

the number of collections a particular object has survived. After each generation of objects finishes with a GC, 

those still alive have their age incremented. Whenever the age exceeds a certain tenuring threshold the object 

will be promoted to Old space. 

 

The actual tenuring threshold is dynamically adjusted by the JVM, but specifying -

XX:+MaxTenuringThreshold sets an upper limit on it. Setting -XX:+MaxTenuringThreshold=0 results in 

immediate promotion without copying it between Survivor spaces. By default, this threshold on modern JVMs is 

set to 15 GC cycles. This is also the maximum value in HotSpot. 

Promotion may also happen prematurely if the size of the Survivor space is not enough to hold all of the live 

objects in the Young generation. 

Old Generation 

The implementation for the Old Generation memory space is much more complex. Old Generation is usually 

significantly larger and is occupied by objects that are less likely to be garbage. 

GC in the Old Generation happens less frequently than in the Young Generation. Also, since most objects are 

expected to be alive in the Old Generation, there is no Mark and Copy happening. Instead, the objects are 

moved around to minimize fragmentation. The algorithms cleaning the Old space are generally built on different 

foundations. In principle, the steps taken go through the following: 

 Mark reachable objects by setting the marked bit next to all objects accessible through GC roots 

 Delete all unreachable objects 

 Compact the content of old space by copying the live objects contiguously to the beginning of the Old space 

As you can see from the description, GC in Old Generation has to deal with explicit compacting to avoid 

excessive fragmentation. 
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PermGen 

Prior to Java 8 there existed a special space called the ‘Permanent Generation’. This is where the metadata 

such as classes would go. Also, some additional things like internalized strings were kept in Permgen. It actually 

used to create a lot of trouble to Java developers, since it is quite hard to predict how much space all of that 

would require. Result of these failed predictions took the form of java.lang.OutOfMemoryError: Permgen space. 

Unless the cause of such OutOfMemoryError was an actual memory leak, the way to fix this problem was to 

simply increase the permgen size similar to the following example setting the maximum allowed permgen size 

to 256 MB: 

 

java -XX:MaxPermSize=256m com.mycompany.MyApplication 

Metaspace 

As predicting the need for metadata was a complex and inconvenient exercise, the Permanent Generation was 

removed in Java 8 in favor of the Metaspace. From this point on, most of the miscellaneous things were moved 

to regular Java heap. 

The class definitions, however, are now loaded into something called Metaspace. It is located in the native 

memory and does not interfere with the regular heap objects. By default, Metaspace size is only limited by the 

amount of native memory available to the Java process. This saves developers from a situation when adding 

just one more class to the application results in the java.lang.OutOfMemoryError: Permgen space. Notice that 

having such seemingly unlimited space does not ship without costs – letting the Metaspace to grow 

uncontrollably you can introduce heavy swapping and/or reach native allocation failures instead. 

In case you still wish to protect yourself for such occasions you can limit the growth of Metaspace similar to 

following, limiting Metaspace size to 256 MB: 

java -XX:MaxMetaspaceSize=256m com.mycompany.MyApplication 

Minor GC vs Major GC vs Full GC 
The Garbage Collection events cleaning out different parts inside heap memory are often called Minor, Major 

and Full GC events. In this section we cover the differences between these events. Along the way we can 

hopefully see that this distinction is actually not too relevant. 

What typically is relevant is whether the application meets its SLAs, and to see that you monitor your application 

for latency or throughput. And only then are GC events linked to the results. What is important about these 

events is whether they stopped the application and how long it took. 

But as the terms Minor, Major and Full GC are widely used and without a proper definition, let us look into the 

topic in a bit more detail. 

Minor GC 

Collecting garbage from the Young space is called Minor GC. This definition is both clear and uniformly 

understood. But there are still some interesting takeaways you should be aware of when dealing with Minor 

Garbage Collection events: 

https://plumbr.eu/outofmemoryerror/permgen-space
https://plumbr.eu/outofmemoryerror/permgen-space
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1. Minor GC is always triggered when the JVM is unable to allocate space for a new object, e.g. Eden is getting 

full. So the higher the allocation rate, the more frequently Minor GC occurs. 

2. During a Minor GC event, Tenured Generation is effectively ignored. References from Tenured Generation 

to Young Generation are considered to be GC roots. References from Young Generation to Tenured 

Generation are simply ignored during the mark phase. 

3. Against common belief, Minor GC does trigger stop-the-world pauses, suspending the application threads. 

For most applications, the length of the pauses is negligible latency-wise if most of the objects in the Eden 

can be considered garbage and are never copied to Survivor/Old spaces. If the opposite is true and most of 

the newborn objects are not eligible for collection, Minor GC pauses start taking considerably more time. 

Major GC vs Full GC 

It should be noted that there are no formal definitions for those terms – neither in the JVM specification nor in 

the Garbage Collection research papers. But on the first glance, building these definitions on top of what we 

know to be true about Minor GC cleaning Young space should be simple: 

 Major GC is cleaning the Old space. 

 Full GC is cleaning the entire Heap – both Young and Old spaces. 

Unfortunately it is a bit more complex and confusing. To start with – many Major GCs are triggered by Minor 

GCs, so separating the two is impossible in many cases. On the other hand – modern garbage collection 

algorithms like G1 perform partial garbage cleaning so, again, using the term ‘cleaning’ is only partially correct. 

This leads us to the point where instead of worrying about whether the GC is called Major or Full GC, you 

should focus on finding out whether the GC at hand stopped all the application threads or was able to 

progress concurrently with the application threads. 

This confusion is even built right into the JVM standard tools. What I mean by that is best explained via an 

example. Let us compare the output of two different tools tracing the GC on a JVM running with Concurrent 

Mark and Sweep collector (-XX:+UseConcMarkSweepGC).  

Let’s first attempt to get the insight via the jstat output: 

 

my-precious: me$ jstat -gc -t 4235 1s 

Time S0C    S1C    S0U    S1U      EC       EU        OC         OU       MC     MU    CCSC   

CCSU   YGC     YGCT    FGC    FGCT     GCT    

 5.7 34048.0 34048.0  0.0   34048.0 272640.0 194699.7 1756416.0   181419.9  18304.0 17865.1 

2688.0 2497.6      3    0.275   0      0.000    0.275 

 6.7 34048.0 34048.0 34048.0  0.0   272640.0 247555.4 1756416.0   263447.9  18816.0 18123.3 

2688.0 2523.1      4    0.359   0      0.000    0.359 

 7.7 34048.0 34048.0  0.0   34048.0 272640.0 257729.3 1756416.0   345109.8  19072.0 18396.6 

2688.0 2550.3      5    0.451   0      0.000    0.451 

 8.7 34048.0 34048.0 34048.0 34048.0 272640.0 272640.0 1756416.0  444982.5  19456.0 18681.3 

2816.0 2575.8      7    0.550   0      0.000    0.550 

 9.7 34048.0 34048.0 34046.7  0.0   272640.0 16777.0  1756416.0   587906.3  20096.0 19235.1 

2944.0 2631.8      8    0.720   0      0.000    0.720 

10.7 34048.0 34048.0  0.0   34046.2 272640.0 80171.6  1756416.0   664913.4  20352.0 19495.9 

2944.0 2657.4      9    0.810   0      0.000    0.810 

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/jstat.html
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11.7 34048.0 34048.0 34048.0  0.0   272640.0 129480.8 1756416.0   745100.2  20608.0 19704.5 

2944.0 2678.4     10    0.896   0      0.000    0.896 

12.7 34048.0 34048.0  0.0   34046.6 272640.0 164070.7 1756416.0   822073.7  20992.0 19937.1 

3072.0 2702.8     11    0.978   0      0.000    0.978 

13.7 34048.0 34048.0 34048.0  0.0   272640.0 211949.9 1756416.0   897364.4  21248.0 20179.6 

3072.0 2728.1     12    1.087   1      0.004    1.091 

14.7 34048.0 34048.0  0.0   34047.1 272640.0 245801.5 1756416.0   597362.6  21504.0 20390.6 

3072.0 2750.3     13    1.183   2      0.050    1.233 

15.7 34048.0 34048.0  0.0   34048.0 272640.0 21474.1  1756416.0   757347.0  22012.0 20792.0 

3200.0 2791.0     15    1.336   2      0.050    1.386 

16.7 34048.0 34048.0 34047.0  0.0   272640.0 48378.0  1756416.0   838594.4  22268.0 21003.5 

3200.0 2813.2     16    1.433   2      0.050    1.484 

 

This snippet is extracted from the first 17 seconds after the JVM was launched. Based on this information we 

could conclude that after 12 Minor GC runs two Full GC runs were performed, spanning 50ms in total. You 

would get the same confirmation via GUI-based tools, such as the jconsole or jvisualvm. 

 

Before nodding at this conclusion, let’s look at the output of the garbage collection logs gathered from the same 

JVM launch. Apparently -XX:+PrintGCDetails tells us a different and a more detailed story: 

 

java -XX:+PrintGCDetails -XX:+UseConcMarkSweepGC eu.plumbr.demo.GarbageProducer 

3.157: [GC (Allocation Failure) 3.157: [ParNew: 272640K->34048K(306688K), 0.0844702 secs] 

272640K->69574K(2063104K), 0.0845560 secs] [Times: user=0.23 sys=0.03, real=0.09 secs]  

4.092: [GC (Allocation Failure) 4.092: [ParNew: 306688K->34048K(306688K), 0.1013723 secs] 

342214K->136584K(2063104K), 0.1014307 secs] [Times: user=0.25 sys=0.05, real=0.10 secs]  

... cut for brevity ... 

11.292: [GC (Allocation Failure) 11.292: [ParNew: 306686K->34048K(306688K), 0.0857219 

secs] 971599K->779148K(2063104K), 0.0857875 secs] [Times: user=0.26 sys=0.04, real=0.09 

secs]  

12.140: [GC (Allocation Failure) 12.140: [ParNew: 306688K->34046K(306688K), 0.0821774 

secs] 1051788K->856120K(2063104K), 0.0822400 secs] [Times: user=0.25 sys=0.03, real=0.08 

secs]  

12.989: [GC (Allocation Failure) 12.989: [ParNew: 306686K->34048K(306688K), 0.1086667 

secs] 1128760K->931412K(2063104K), 0.1087416 secs] [Times: user=0.24 sys=0.04, real=0.11 

secs]  

13.098: [GC (CMS Initial Mark) [1 CMS-initial-mark: 897364K(1756416K)] 936667K(2063104K), 

0.0041705 secs] [Times: user=0.02 sys=0.00, real=0.00 secs]  

13.102: [CMS-concurrent-mark-start] 

13.341: [CMS-concurrent-mark: 0.238/0.238 secs] [Times: user=0.36 sys=0.01, real=0.24 

secs]  

13.341: [CMS-concurrent-preclean-start] 

13.350: [CMS-concurrent-preclean: 0.009/0.009 secs] [Times: user=0.03 sys=0.00, real=0.01 

secs]  

13.350: [CMS-concurrent-abortable-preclean-start] 

http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://download.oracle.com/javase/6/docs/technotes/tools/share/jvisualvm.html
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13.878: [GC (Allocation Failure) 13.878: [ParNew: 306688K->34047K(306688K), 0.0960456 

secs] 1204052K->1010638K(2063104K), 0.0961542 secs] [Times: user=0.29 sys=0.04, real=0.09 

secs]  

14.366: [CMS-concurrent-abortable-preclean: 0.917/1.016 secs] [Times: user=2.22 sys=0.07, 

real=1.01 secs]  

14.366: [GC (CMS Final Remark) [YG occupancy: 182593 K (306688 K)]14.366: [Rescan 

(parallel) , 0.0291598 secs]14.395: [weak refs processing, 0.0000232 secs]14.395: [class 

unloading, 0.0117661 secs]14.407: [scrub symbol table, 0.0015323 secs]14.409: [scrub string 

table, 0.0003221 secs][1 CMS-remark: 976591K(1756416K)] 1159184K(2063104K), 0.0462010 

secs] [Times: user=0.14 sys=0.00, real=0.05 secs]  

14.412: [CMS-concurrent-sweep-start] 

14.633: [CMS-concurrent-sweep: 0.221/0.221 secs] [Times: user=0.37 sys=0.00, real=0.22 

secs]  

14.633: [CMS-concurrent-reset-start] 

14.636: [CMS-concurrent-reset: 0.002/0.002 secs] [Times: user=0.00 sys=0.00, real=0.00 

secs] 

Based on this information we can see that after 12 Minor GC runs ‘something different’ indeed started 

happening. But instead of two Full GC runs, this ‘different thing’ was in reality just a single GC running in Old 

generation and consisting of different phases: 

 Initial Mark phase, spanning for 0.0041705 seconds or approximately 4ms. This phase is a stop-the-world 

event stopping all application threads for initial marking. 

 Markup and Preclean phases were executed concurrently with the application threads. 

 Final Remark phase, spanning for 0.0462010 seconds or approximately 46ms. This phase is again stop-the-

world event. 

 Sweep operation was executed concurrently, without stopping the application threads. 

So what we see from the actual garbage collection logs is that, instead of two Full GC operations, just one Major 

GC cleaning Old space was actually executed. 

If you were after latency then the data revealed by jstat would have led you towards correct decisions. It correctly 

listed the two stop-the-world events totaling 50ms affecting the latency for all the active threads at that very 

moment. But if you were trying to optimize for throughput, you would have been misguided – listing just the stop-

the-world initial mark and final remark phases, the jstat output completely hides the concurrent work being done. 
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GC Algorithms: Basics 
Before diving into the practical implementation details of Garbage Collection algorithms it will be beneficial to 

define the required terminology and to understand the basic principles supporting the implementations. Specific 

details vary from collector to collector but in general all collectors focus on two areas 

 Find out all objects that are still alive 

 Get rid of everything else – the supposedly dead and unused objects. 

 

First part, the census on live objects, is implemented in all collectors with the help of a process called Marking. 

Marking Reachable Objects 
Every modern GC algorithm used in JVM starts its job with finding out all objects that are still alive. This concept 

is best explained using the following picture representing your JVM’s memory layout: 

 

First, GC defines some specific objects as Garbage Collection Roots. Examples of such GC roots are: 

 Local variable and input parameters of the currently executing methods 

 Active threads 

 Static field of the loaded classes 

 JNI references 

 

Next, GC traverses the whole object graph in your memory, starting from those Garbage Collection Roots and 

following references from the roots to other objects, e.g. instance fields. Every object the GC visits is marked as 

alive. 

Live objects are represented as blue on the picture above. When the marking phase finishes, every live object 

is marked. All other objects (grey data structures on the picture above) are thus unreachable from the GC roots, 

implying that your application cannot use the unreachable objects anymore. Such objects are considered 

garbage and GC should get rid of them in the following phases. 

There are important aspects to note about the marking phase: 

 The application threads need to be stopped for the marking to happen as you cannot really traverse the 

graph if it keeps changing under your feet all the time. Such a situation when the application threads are 

temporarily stopped so that the JVM can indulge in housekeeping activities is called a safe point resulting 

in a Stop The World pause. Safe points can be triggered for different reasons but garbage collection is by 

far the most common reason for a safe point to be introduced. 
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 The duration of this pause depends neither on the total number of objects in heap nor on the size of the heap 

but on the number of alive objects. So increasing the size of the heap does not directly affect the duration 

of the marking phase. 

 

When the mark phase is completed, the GC can proceed to the next step and start removing the unreachable 

objects. 

Removing Unused Objects 
Removal of unused objects is somewhat different for different GC algorithms but all such GC algorithms can be 

divided into three groups: 

 Sweeping 

 Compacting 

 Copying 

Sweep 

Mark and Sweep algorithms use conceptually the simplest approach to garbage by just ignoring such objects. 

What this means is that after the marking phase has completed all space occupied by unvisited objects is 

considered free and can thus be reused to allocate new objects. 

The approach requires using the so called free-list recording of every free region and its size. The management 

of the free-lists adds overhead to object allocation. Built into this approach is another weakness – there may 

exist plenty of free regions but if no single region is large enough to accommodate the allocation, the allocation 

is still going to fail (with an OutOfMemoryError in Java). 

 

Compact 

Mark-Sweep-Compact algorithms solve the shortcomings of Mark and Sweep by moving all marked – and thus 

alive – objects to the beginning of the memory region. The downside of this approach is an increased GC pause 

duration as we need to copy all objects to a new place and to update all references to such objects. The benefits 

to Mark and Sweep are also visible – after such a compacting operation new object allocation is again extremely 

cheap via pointer bumping. Using such approach the location of the free space is always known and no 

fragmentation issues are triggered either.  

http://plumbr.eu/outofmemoryerror
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Copy 

Mark and Copy algorithms are very similar to the Mark and Compact as they too relocate all live objects. The 

important difference is that the target of relocation is a different memory region as a new home for survivors. 

Mark and Copy approach has some advantages as copying can occur simultaneously with marking during the 

same phase. The disadvantage is the need for one more memory region, which should be large enough to 

accommodate survived objects. 
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GC Algorithms: Implementations 
Now that we have reviewed the core concepts behind GC algorithms, let us move to the specific implementations 

one can find inside the JVM. An important aspect to recognize first is the fact that, for most JVMs out there, two 

different GC algorithms are needed – one to clean the Young Generation and another to clean the Old 

Generation. 

You can choose from a variety of such algorithms bundled into the JVM. If you do not specify a garbage collection 

algorithm explicitly, a platform-specific default will be used. In this chapter, the working principles of each of 

those algorithms will be explained. 

For a quick cheat sheet, the following list is a fast way to get yourself up to speed with which algorithm 

combinations are possible. Note that this stands true for Java 8, for older Java versions the available 

combinations might differ a bit: 

Young Tenured JVM options 

Incremental Incremental -Xincgc 

Serial Serial -XX:+UseSerialGC 

Parallel Scavenge Serial -XX:+UseParallelGC -XX:-UseParallelOldGC 

Parallel New Serial N/A 

Serial Parallel Old N/A 

Parallel Scavenge Parallel Old -XX:+UseParallelGC -XX:+UseParallelOldGC 

Parallel New Parallel Old N/A 

Serial CMS -XX:-UseParNewGC -XX:+UseConcMarkSweepGC 

Parallel Scavenge CMS N/A 

Parallel New CMS -XX:+UseParNewGC -XX:+UseConcMarkSweepGC 

G1 -XX:+UseG1GC 

 

If the above looks too complex, do not worry. In reality it all boils down to just four combinations highlighted in 

the table above. The rest are either deprecated, not supported or just impractical to apply in real world. So, in 

the following chapters we cover the working principles of the following combinations: 

 Serial GC for both the Young and Old generations 

 Parallel GC for both the Young and Old generations 

 Parallel New for Young + Concurrent Mark and Sweep (CMS) for the Old Generation 

 G1 in case of which the generations are not separated between the Young and Old 

Serial GC 
This collection of garbage collectors uses mark-copy for the Young Generation and mark-sweep-compact for 

the Old Generation. As the name implies – both of these collectors are single-threaded collectors, incapable of 

parallelizing the task at hand. Both collectors also trigger stop-the-world pauses, stopping all application threads. 

This GC algorithm cannot thus take advantage of multiple CPU cores commonly found in modern hardware. 

Independent of the number of cores available, just one is used by the JVM during garbage collection. 

http://openjdk.java.net/jeps/173
https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/copy
https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/compact
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Enabling this collector for both the Young and Old Generation is done via specifying a single parameter in the 

JVM startup script: 

java -XX:+UseSerialGC com.mypackages.MyExecutableClass 

This option makes sense and is recommended only for the JVM with a couple of hundreds megabytes heap 

size, running in an environment with a single CPU. For the majority of server-side deployments this is a rare 

combination. Most server-side deployments are done on platforms with multiple cores, essentially meaning that 

by choosing Serial GC you are setting artificial limits on the use of system resources. This results in idle 

resources which otherwise could be used to reduce latency or increase throughput. 

Let us now review how garbage collector logs look like when using Serial GC and what useful information one 

can obtain from there. For this purpose, we have turned on GC logging on the JVM using the following 

parameters: 

–XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps 

The resulting output is similar to the following: 

2015-05-26T14:45:37.987-0200: 151.126: [GC (Allocation Failure) 151.126: [DefNew: 

629119K->69888K(629120K), 0.0584157 secs] 1619346K->1273247K(2027264K), 0.0585007 secs] 

[Times: user=0.06 sys=0.00, real=0.06 secs] 

2015-05-26T14:45:59.690-0200: 172.829: [GC (Allocation Failure) 172.829: [DefNew: 

629120K->629120K(629120K), 0.0000372 secs]172.829: [Tenured: 1203359K-

>755802K(1398144K), 0.1855567 secs] 1832479K->755802K(2027264K), [Metaspace: 6741K-

>6741K(1056768K)], 0.1856954 secs] [Times: user=0.18 sys=0.00, real=0.18 secs] 

Such short snippet from the GC logs exposes a lot of information about what is taking place inside the JVM. As 

a matter of fact, in this snippet there were two Garbage Collection events taking place, one of them cleaning the 

Young Generation and another taking care of the entire heap. Let’s start by analyzing the first collection that is 

taking place in the Young Generation. 

Minor GC 

Following snippet contains the information about a GC event cleaning the Young Generation: 

2015-05-26T14:45:37.987-02001:151.1262:[GC3(Allocation Failure4) 151.126: 

[DefNew5:629119K->69888K6(629120K)7, 0.0584157 secs]1619346K-

>1273247K8(2027264K)9,0.0585007 secs10][Times: user=0.06 sys=0.00, real=0.06 secs]11 

1. 2015-05-26T14:45:37.987-0200 – Time when the GC event started. 

2. 151.126 – Time when the GC event started, relative to the JVM startup time. Measured in seconds. 

3. GC – Flag to distinguish between Minor & Full GC. This time it is indicating that this was a Minor GC. 

4. Allocation Failure – Cause of the collection. In this case, the GC is triggered due to a data structure 

not fitting into any region in the Young Generation. 

5. DefNew – Name of the garbage collector used. This cryptic name stands for the single-threaded mark-copy 

stop-the-world garbage collector used to clean Young generation. 

6. 629119K->69888K – Usage of the Young Generation before and after collection. 
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7. (629120K) – Total size of the Young Generation. 

8. 1619346K->1273247K  – Total used heap before and after collection. 

9. (2027264K) – Total available heap. 

10. 0.0585007 secs – Duration of the GC event in seconds. 

11. [Times: user=0.06 sys=0.00, real=0.06 secs] – Duration of the GC event, measured in different 

categories: 

o user – Total CPU time that was consumed by the garbage collector threads during this collection 

o sys – Time spent in OS calls or waiting for system event 

o real – Clock time for which your application was stopped. As Serial Garbage Collector always uses 

just a single thread, real time is thus equal to the sum of user and system times. 

From the above snippet we can understand exactly what was happening with the memory consumption inside 

JVM during the GC event. Before this collection, heap usage totaled at 1,619,346K. Out of this, the Young 

Generation consumed 629,119K. From this we can calculate the Old Generation usage being equal to 990,227K. 

A more important conclusion is hidden in the next batch of numbers indicating that, after the collection, Young 

Generation usage decreased by 559,231K but total heap usage decreased only by 346,099K. From this we can 

again derive that 213,132K of objects were promoted from the Young Generation to the Old Generation. 

This GC event is also illustrated with the following snapshots showing memory usage right before the GC started 

and right after it finished: 

 

Full GC 

After understanding the first minor GC event, let’s look into the second GC event in the logs: 

2015-05-26T14:45:59.690-02001: 172.8292:[GC (Allocation Failure) 172.829:[DefNew: 

629120K->629120K(629120K), 0.0000372 secs3]172.829:[Tenured4: 1203359K-

>755802K 5(1398144K) 6,0.1855567 secs7] 1832479K->755802K8(2027264K)9,[Metaspace: 6741K-

>6741K(1056768K)]10 [Times: user=0.18 sys=0.00, real=0.18 secs]11 

1. 2015-05-26T14:45:59.690-0200 – Time when the GC event started. 

2. 172.829 – Time when the GC event started, relative to the JVM startup time. Measured in seconds. 

3. [DefNew: 629120K->629120K(629120K), 0.0000372 secs – Similar to the previous example, a minor 

garbage collection in the Young Generation happened during this event due to Allocation Failure. For this 

collection the same DefNew collector was run as before and it decreased the usage of the Young 

Generation from 629120K to 0. Notice that JVM reports this incorrectly due to buggy behavior and instead 

reports the Young Generation as being completely full. This collection took 0.0000372 seconds. 
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4. Tenured – Name of the garbage collector used to clean the Old space. The name Tenured indicates a 

single-threaded stop-the-world mark-sweep-compact garbage collector being used. 

5. 1203359K->755802K  – Usage of Old generation before and after the event. 

6. (1398144K) – Total capacity of the Old generation. 

7. 0.1855567 secs – Time it took to clean the Old Generation. 

8. 1832479K->755802K  – Usage of the whole heap before and after the collection of the Young and Old 

Generations. 

9. (2027264K) – Total heap available for the JVM. 

10. [Metaspace: 6741K->6741K(1056768K)]  – Similar information about Metaspace collection. As seen, no 

garbage was collected in Metaspace during the event. 

11. [Times: user=0.18 sys=0.00, real=0.18 secs] – Duration of the GC event, measured in different 

categories: 

o user – Total CPU time that was consumed by Garbage Collector threads during this collection 

o sys – Time spent in OS calls or waiting for system event 

o real – Clock time for which your application was stopped. As Serial Garbage Collector always uses 

just a single thread, real time is thus equal to the sum of user and system times. 

The difference with Minor GC is evident – in addition to the Young Generation, during this GC event the Old 

Generation and Metaspace were also cleaned. The layout of the memory before and after the event would look 

like the situation in the following picture: 

 

Parallel GC 
This combination of Garbage Collectors uses mark-copy in the Young Generation and mark-sweep-

compact in the Old Generation. Both Young and Old collections trigger stop-the-world events, stopping all 

application threads to perform garbage collection. Both collectors run marking and copying / compacting phases 

using multiple threads, hence the name ‘Parallel’. Using this approach, collection times can be considerably 

reduced. 

 

The number of threads used during garbage collection is configurable via the command line parameter 

-XX:ParallelGCThreads=NNN . The default value is equal to the number of cores in your machine. 

Selection of Parallel GC is done via the specification of any of the following combinations of parameters in the 

JVM startup script: 

java -XX:+UseParallelGC com.mypackages.MyExecutableClass 

java -XX:+UseParallelOldGC com.mypackages.MyExecutableClass 

https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/copy
https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/compact
https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/compact
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java -XX:+UseParallelGC -XX:+UseParallelOldGC com.mypackages.MyExecutableClass 

Parallel Garbage Collector is suitable on multi-core machines in cases where your primary goal is to increase 

throughput. High throughput is achieved due effective usage of system resources: 

 during collection, all cores are cleaning the garbage in parallel, resulting in shorter pauses 

 between garbage collection cycles neither of the collectors is consuming any resources 

On the other hand, as all phases of the collection have to happen without any interruptions, these collectors are 

still susceptible to long pauses during which your application threads are stopped. So if latency is your primary 

goal, you should check the next combinations of garbage collectors. 

Let us now review how garbage collector logs look like when using Parallel GC and what useful information one 

can obtain from there. For this, let’s look again at the garbage collector logs that expose once more one minor 

and one major GC pause: 

2015-05-26T14:27:40.915-0200: 116.115: [GC (Allocation Failure) [PSYoungGen: 2694440K-

>1305132K(2796544K)] 9556775K->8438926K(11185152K), 0.2406675 secs] [Times: user=1.77 

sys=0.01, real=0.24 secs] 

2015-05-26T14:27:41.155-0200: 116.356: [Full GC (Ergonomics) [PSYoungGen: 1305132K-

>0K(2796544K)] [ParOldGen: 7133794K->6597672K(8388608K)] 8438926K->6597672K(11185152K), 

[Metaspace: 6745K->6745K(1056768K)], 0.9158801 secs] [Times: user=4.49 sys=0.64, 

real=0.92 secs] 

Minor GC 

The first of the two events indicates a GC event taking place in the Young Generation: 

2015-05-26T14:27:40.915-02001: 116.1152:[GC3(Allocation Failure4)[PSYoungGen5: 2694440K-

>1305132K6(2796544K)7]9556775K->8438926K8(11185152K)9, 0.2406675 secs10][Times: user=1.77 

sys=0.01, real=0.24 secs]11 

1. 2015-05-26T14:27:40.915-0200 – Time when the GC event started. 

2. 116.115 – Time when the GC event started, relative to the JVM startup time. Measured in seconds. 

3. GC – Flag to distinguish between Minor & Full GC. This time it is indicating that this was a Minor GC. 

4. Allocation Failure – Cause of the collection. In this case, the GC is triggered due to a data structure 

not fitting into any region in the Young Generation. 

5. PSYoungGen – Name of the garbage collector used, representing a parallel mark-copy stop-the-world 

garbage collector used to clean the Young generation. 

6. 2694440K->1305132K  – usage of the Young Generation before and after collection 

7. (2796544K) – Total size of the Young Generation 

8. 9556775K->8438926K  – Total heap usage before and after collection 

9. (11185152K) – Total available heap 

10. 0.2406675 secs – Duration of the GC event in seconds 

11. [Times: user=1.77 sys=0.01, real=0.24 secs] – Duration of the GC event, measured in different 

categories: 

o user – Total CPU time that was consumed by Garbage Collector threads during this collection 

o sys – Time spent in OS calls or waiting for system event 
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o real – Clock time for which your application was stopped. With Parallel GC this number should be 

close to (user time + system time) divided by the number of threads used by Garbage Collector. In this 

particular case 8 threads were used. Note that due to some activities not being parallelizable, it always 

exceeds the ratio by a certain amount. 

So, in short, the total heap consumption before the collection was 9,556,775K. Out of this Young generation 

was 2,694,440K. This means that used Old generation was 6,862,335K. After the collection young generation 

usage decreased by 1,389,308K, but total heap usage decreased only by 1,117,849K. This means that 

271,459K was promoted from Young generation to Old. 

 

Full GC 

After understanding how Parallel GC cleans the Young Generation, we are ready to look at how the whole heap 

is being cleaned by analyzing the next snippet from the GC logs: 

2015-05-26T14:27:41.155-02001:116.3562:[Full GC3 (Ergonomics4)[PSYoungGen: 1305132K-

>0K(2796544K)]5[ParOldGen6:7133794K->6597672K 7(8388608K)8] 8438926K-

>6597672K9(11185152K)10, [Metaspace: 6745K->6745K(1056768K)] 11, 0.9158801 

secs12, [Times: user=4.49 sys=0.64, real=0.92 secs]13 

1. 2015-05-26T14:27:41.155-0200 – Time when the GC event started 

2. 116.356 – Time when the GC event started, relative to the JVM startup time. Measured in seconds. In this 

case we can see the event started right after the previous Minor GC finished. 

3. Full GC – Flag indicating that the event is Full GC event cleaning both the Young and Old generations. 

4. Ergonomics – Reason for the GC taking place. This indicates that the JVM internal ergonomics decided 

this is the right time to collect some garbage. 

5. [PSYoungGen: 1305132K->0K(2796544K)] – Similar to previous example, a parallel mark-copy stop-the-

world garbage collector named “PSYoungGen” was used to clean the Young Generation. Usage of Young 

Generation shrank from 1305132K to 0, since after a Full GC the Young Generation is often left completely 

empty. 

6. ParOldGen – Type of the collector used to clean the Old Generation. In this case, parallel mark-sweep-

compact stop-the-world garbage collector named ParOldGen was used. 

7. 7133794K->6597672K  – Usage of the Old Generation before and after the collection 

8. (8388608K) – Total size of the Old Generation 

9. 8438926K->6597672K  – Usage of the whole heap before and after the collection. 

10. (11185152K) – Total heap available 

11. [Metaspace: 6745K->6745K(1056768K)]  – Similar information about Metaspace region. As we can see, 

no garbage was collected in Metaspace during this event. 

12. 0.9158801 secs – Duration of the GC event in seconds 



Plumbr Java Garbage Collection Handbook 2015 24 

13. [Times: user=4.49 sys=0.64, real=0.92 secs] – Duration of the GC event, measured in different 

categories: 

o user – Total CPU time that was consumed by Garbage Collector threads during this collection 

o sys – Time spent in OS calls or waiting for system event 

o real – Clock time for which your application was stopped. With Parallel GC this number should be 

close to (user time + system time) divided by the number of threads used by Garbage Collector. In this 

particular case 8 threads were used. Note that due to some activities not being parallelizable, it always 

exceeds the ratio by a certain amount. 

Again, the difference with Minor GC is evident – in addition to the Young Generation, during this GC event the 

Old Generation and Metaspace were also cleaned. The layout of the memory before and after the event would 

look like the situation in the following picture: 

 

Concurrent Mark and Sweep 
The official name for this collection of garbage collectors is “Mostly Concurrent Mark and Sweep Garbage 

Collector”. It uses the parallel stop-the-world mark-copy algorithm in the Young Generation and the mostly 

concurrent mark-sweep algorithm in the Old Generation. 

This collector was designed to avoid long pauses while collecting in the Old Generation. It achieves this by two 

means. Firstly, it does not compact the Old Generation but uses free-lists to manage reclaimed space. Secondly, 

it does most of the job in the mark-and-sweep phases concurrently with the application. This means that garbage 

collection is not stopping the application threads completely and is using multiple threads to complete the 

collection. By default, the number of threads used by this GC algorithm equals to ¼ of the number of physical 

cores of your machine. 

This garbage collector can be chosen by specifying the following option on your command line: 

java -XX:+UseConcMarkSweepGC com.mypackages.MyExecutableClass 

This combination is a good choice on multi-core machines if your primary target is latency.  Decreasing the 

duration of the individual GC pause directly affects the way your application is perceived by end-users, giving 

them a feel of a more responsive application. As most of the time at least some CPU resources are consumed 

by the GC and not executing your application’s code, CMS generally provides worse throughput than Parallel 

GC. 

https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/copy
https://plumbr.eu/handbook/garbage-collection-algorithms/removing-unused-objects/sweep


Plumbr Java Garbage Collection Handbook 2015 25 

As with previous GC algorithms, let us now see how this algorithm is applied in practice by taking a look at the 

GC logs that once again expose one minor and one major GC pause: 

2015-05-26T16:23:07.219-0200: 64.322: [GC (Allocation Failure) 64.322: [ParNew: 613404K-

>68068K(613440K), 0.1020465 secs] 10885349K->10880154K(12514816K), 0.1021309 secs] 

[Times: user=0.78 sys=0.01, real=0.11 secs] 

2015-05-26T16:23:07.321-0200: 64.425: [GC (CMS Initial Mark) [1 CMS-initial-mark: 

10812086K(11901376K)] 10887844K(12514816K), 0.0001997 secs] [Times: user=0.00 sys=0.00, 

real=0.00 secs] 

2015-05-26T16:23:07.321-0200: 64.425: [CMS-concurrent-mark-start] 

2015-05-26T16:23:07.357-0200: 64.460: [CMS-concurrent-mark: 0.035/0.035 secs] [Times: 

user=0.07 sys=0.00, real=0.03 secs] 

2015-05-26T16:23:07.357-0200: 64.460: [CMS-concurrent-preclean-start] 

2015-05-26T16:23:07.373-0200: 64.476: [CMS-concurrent-preclean: 0.016/0.016 secs] 

[Times: user=0.02 sys=0.00, real=0.02 secs] 

2015-05-26T16:23:07.373-0200: 64.476: [CMS-concurrent-abortable-preclean-start] 

2015-05-26T16:23:08.446-0200: 65.550: [CMS-concurrent-abortable-preclean: 0.167/1.074 

secs] [Times: user=0.20 sys=0.00, real=1.07 secs] 

2015-05-26T16:23:08.447-0200: 65.550: [GC (CMS Final Remark) [YG occupancy: 387920 K 

(613440 K)]65.550: [Rescan (parallel) , 0.0085125 secs]65.559: [weak refs processing, 

0.0000243 secs]65.559: [class unloading, 0.0013120 secs]65.560: [scrub symbol table, 

0.0008345 secs]65.561: [scrub string table, 0.0001759 secs][1 CMS-remark: 

10812086K(11901376K)] 11200006K(12514816K), 0.0110730 secs] [Times: user=0.06 sys=0.00, 

real=0.01 secs] 

2015-05-26T16:23:08.458-0200: 65.561: [CMS-concurrent-sweep-start] 

2015-05-26T16:23:08.485-0200: 65.588: [CMS-concurrent-sweep: 0.027/0.027 secs] [Times: 

user=0.03 sys=0.00, real=0.03 secs] 

2015-05-26T16:23:08.485-0200: 65.589: [CMS-concurrent-reset-start] 

2015-05-26T16:23:08.497-0200: 65.601: [CMS-concurrent-reset: 0.012/0.012 secs] [Times: 

user=0.01 sys=0.00, real=0.01 secs] 

Minor GC 

First of the GC events in log denotes a minor GC cleaning the Young space. Let’s analyze how this collector 

combination behaves in this regard: 

2015-05-26T16:23:07.219-02001: 64.3222:[GC3(Allocation Failure4) 64.322: 

[ParNew5: 613404K->68068K6(613440K) 7, 0.1020465 secs8] 10885349K-

>10880154K 9(12514816K)10, 0.1021309 secs11][Times: user=0.78 sys=0.01, real=0.11 secs]12 

1. 2015-05-26T16:23:07.219-0200 – Time when the GC event started. 
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2. 64.322 – Time when the GC event started, relative to the JVM startup time. Measured in seconds. 

3. GC – Flag to distinguish between Minor & Full GC. This time it is indicating that this was a Minor GC. 

4. Allocation Failure – Cause of the collection. In this case, the GC is triggered due to a requested 

allocation not fitting into any region in Young Generation. 

5. ParNew – Name of the collector used, this time it indicates a parallel mark-copy stop-the-world garbage 

collector used in the Young Generation, designed to work in conjunction with Concurrent Mark & Sweep 

garbage collector in the Old Generation. 

6. 613404K->68068K – Usage of the Young Generation before and after collection. 

7. (613440K) – Total size of the Young Generation. 

8. 0.1020465 secs – Duration for the collection w/o final cleanup. 

9. 10885349K->10880154K  – Total used heap before and after collection. 

10. (12514816K) – Total available heap. 

11. 0.1021309 secs – The time it took for the garbage collector to mark and copy live objects in the Young 

Generation. This includes communication overhead with ConcurrentMarkSweep collector, promotion of 

objects that are old enough to the Old Generation and some final cleanup at the end of the garbage 

collection cycle. 

12. [Times: user=0.78 sys=0.01, real=0.11 secs] – Duration of the GC event, measured in different 

categories: 

o user – Total CPU time that was consumed by Garbage Collector threads during this collection 

o sys – Time spent in OS calls or waiting for system event 

o real – Clock time for which your application was stopped. With Parallel GC this number should be 

close to (user time + system time) divided by the number of threads used by the Garbage Collector. 

In this particular case 8 threads were used. Note that due to some activities not being parallelizable, it 

always exceeds the ratio by a certain amount. 

From the above we can thus see that before the collection the total used heap was 10,885,349K and the used 

Young Generation share was 613,404K. This means that the Old Generation share was 10,271,945K. After the 

collection, Young Generation usage decreased by 545,336K but total heap usage decreased only by 5,195K. 

This means that 540,141K was promoted from the Young Generation to Old. 

 

Full GC 

Now, just as you are becoming accustomed to reading GC logs already, this chapter will introduce a completely 

different format for the next garbage collection event in the logs. The verbose output that follows consists of all 

the different phases of the mostly concurrent garbage collection in the Old Generation. We will review them one 

by one but in this case we will cover the log content in phases instead of the entire event log at once for more 

concise representation. But to recap, the whole event for the CMS collector looks like the following: 
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2015-05-26T16:23:07.321-0200: 64.425: [GC (CMS Initial Mark) [1 CMS-initial-mark: 

10812086K(11901376K)] 10887844K(12514816K), 0.0001997 secs] [Times: user=0.00 sys=0.00, 

real=0.00 secs] 

2015-05-26T16:23:07.321-0200: 64.425: [CMS-concurrent-mark-start] 

2015-05-26T16:23:07.357-0200: 64.460: [CMS-concurrent-mark: 0.035/0.035 secs] [Times: 

user=0.07 sys=0.00, real=0.03 secs] 

2015-05-26T16:23:07.357-0200: 64.460: [CMS-concurrent-preclean-start] 

2015-05-26T16:23:07.373-0200: 64.476: [CMS-concurrent-preclean: 0.016/0.016 secs] 

[Times: user=0.02 sys=0.00, real=0.02 secs] 

2015-05-26T16:23:07.373-0200: 64.476: [CMS-concurrent-abortable-preclean-start] 

2015-05-26T16:23:08.446-0200: 65.550: [CMS-concurrent-abortable-preclean: 0.167/1.074 

secs] [Times: user=0.20 sys=0.00, real=1.07 secs] 

2015-05-26T16:23:08.447-0200: 65.550: [GC (CMS Final Remark) [YG occupancy: 387920 K 

(613440 K)]65.550: [Rescan (parallel) , 0.0085125 secs]65.559: [weak refs processing, 

0.0000243 secs]65.559: [class unloading, 0.0013120 secs]65.560: [scrub symbol table, 

0.0008345 secs]65.561: [scrub string table, 0.0001759 secs][1 CMS-remark: 

10812086K(11901376K)] 11200006K(12514816K), 0.0110730 secs] [Times: user=0.06 sys=0.00, 

real=0.01 secs] 

2015-05-26T16:23:08.458-0200: 65.561: [CMS-concurrent-sweep-start] 

2015-05-26T16:23:08.485-0200: 65.588: [CMS-concurrent-sweep: 0.027/0.027 secs] [Times: 

user=0.03 sys=0.00, real=0.03 secs] 

2015-05-26T16:23:08.485-0200: 65.589: [CMS-concurrent-reset-start] 

2015-05-26T16:23:08.497-0200: 65.601: [CMS-concurrent-reset: 0.012/0.012 secs] [Times: 

user=0.01 sys=0.00, real=0.01 secs] 

 

Phase 1: Initial Mark. This is one of the two stop-the-world events during CMS. The goal of this phase is to 

collect all Garbage Collector roots. 

2015-05-26T16:23:07.321-0200: 64.421: [GC (CMS Initial Mark2[1 CMS-initial-

mark: 10812086K3(11901376K)4] 10887844K5(12514816K)6, 0.0001997 secs] [Times: user=0.00 

sys=0.00, real=0.00 secs]7 

1. 2015-05-26T16:23:07.321-0200: 64.42 – Time the GC event started, both clock time and relative to 

the time from the JVM start. For the following phases the same notion is used throughout the event and is 

thus skipped for brevity. 

2. CMS Initial Mark – Phase of the collection – “Initial Mark” in this occasion – that is collecting all GC 

Roots. 

3. 10812086K – Currently used Old Generation. 

4. (11901376K) – Total available memory in the Old Generation. 

5. 10887844K – Currently used heap 

6. (12514816K) – Total available heap 
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7. 0.0001997 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] – Duration of the phase, 

measured also in user, system and real time. 

Phase 2: Concurrent Mark. During this phase the Garbage Collector traverses the Old Generation and marks 

all live objects, starting from the roots found in the previous phase of “Initial Mark”. The “Concurrent Mark” phase, 

as its name suggests, runs concurrently with your application and does not stop the application threads. 

2015-05-26T16:23:07.321-0200: 64.425: [CMS-concurrent-mark-start] 

2015-05-26T16:23:07.357-0200: 64.460: [CMS-concurrent-mark1: 035/0.035 secs2] [Times: 

user=0.07 sys=0.00, real=0.03 secs]3 

1. CMS-concurrent-mark – Phase of the collection – “Concurrent Mark” in this occasion – that is traversing 

the Old Generation and marking all live objects. 

2. 035/0.035 secs – Duration of the phase, showing elapsed time and wall clock time correspondingly. 

3. [Times: user=0.07 sys=0.00, real=0.03 secs] – “Times” section is less meaningful for concurrent 

phases as it is measured from the start of the concurrent marking and includes more than just the work 

done for the concurrent marking. 

Phase 3: Concurrent Preclean. This is again a concurrent phase, running in parallel with the application 

threads, not stopping them. While the previous phase was running concurrently with the application, some 

references were changed. Objects that have their fields changed are marked by the JVM as dirty (this is known 

as Card Marking). In the pre-cleaning section, these objects are accounted for and marked as live. Even though 

there may be some false positives (garbage is marked as live), the important thing is to avoid false negatives, 

when actually live objects are not marked. This phase also performs the necessary housekeeping and 

preparations for the Final Remark phase. 

2015-05-26T16:23:07.357-0200: 64.460: [CMS-concurrent-preclean-start] 

2015-05-26T16:23:07.373-0200: 64.476: [CMS-concurrent-preclean1: 0.016/0.016 

secs2] [Times: user=0.02 sys=0.00, real=0.02 secs]3 

1. CMS-concurrent-preclean  – Phase of the collection – “Concurrent Preclean” in this occasion – 

accounting for references being changed during previous marking phase. 

2. 0.016/0.016 secs – Duration of the phase, showing elapsed time and wall clock time correspondingly. 

3. [Times: user=0.02 sys=0.00, real=0.02 secs] – The “Times” section is less meaningful for 

concurrent phases as it is measured from the start of the concurrent marking and includes more than just 

the work done for the concurrent marking. 

Phase 4: Concurrent Abortable Preclean. Again, a concurrent phase that is not stopping the application’s 

threads. This one attempts to take as much work off the shoulders of the stop-the-world Final Remark as 

possible. The exact duration of this phase depends on a number of factors, since it iterates doing the same thing 

until one of the abortion conditions (such as the number of iterations, amount of useful work done, elapsed wall 

clock time, etc) is met. 

2015-05-26T16:23:07.373-0200: 64.476: [CMS-concurrent-abortable-preclean-start] 

2015-05-26T16:23:08.446-0200: 65.550: [CMS-concurrent-abortable-preclean1: 0.167/1.074 

secs2] [Times: user=0.20 sys=0.00, real=1.07 secs]3 

1. CMS-concurrent-abortable-preclean  – Phase of the collection “Concurrent Abortable Preclean” in this 

occasion 
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2. 0.167/1.074 secs – Duration of the phase, showing elapsed and wall clock time respectively. It is 

interesting to note that the user time reported is a lot smaller than clock time. Usually we have seen that 

real time is less than user time, meaning that some work was done in parallel and so elapsed clock time is 

less than used CPU time. Here we have done a little amount of work – for 0.167 seconds of CPU time, and 

garbage collector threads just waited for something for almost a second, not doing any work. 

3. [Times: user=0.20 sys=0.00, real=1.07 secs] – The “Times” section is less meaningful for 

concurrent phases, as it is measured from the start of the concurrent marking and includes more than just 

the work done for the concurrent marking. 

Phase 5: Final Remark. This is the second and last stop-the-world phase during the event. The goal of this 

stop-the-world phase is to finalize marking all live objects in the Old Generation. This means traversing the Old 

Generation starting from the roots determined in the same way as during the Initial Mark plus the so-called "dirty" 

objects, i.e. the ones that had modifications to their fields during the concurrent phases. 

Usually CMS tries to run final remark phase when Young Generation is as empty as possible in order to eliminate 

the possibility of several stop-the-world phases happening back-to-back. 

This event looks a bit more complex than previous phases: 

2015-05-26T16:23:08.447-0200: 65.5501: [GC (CMS Final Remark2) [YG occupancy: 387920 K 

(613440 K)3]65.550: [Rescan (parallel) , 0.0085125 secs]465.559: [weak refs processing, 

0.0000243 secs]65.5595: [class unloading, 0.0013120 secs]65.5606: [scrub string table, 

0.0001759 secs7][1 CMS-remark: 10812086K(11901376K)8] 11200006K(12514816K) 9, 0.0110730 

secs10] [[Times: user=0.06 sys=0.00, real=0.01 secs]11 

1. 2015-05-26T16:23:08.447-0200: 65.550 – Time the GC event started, both clock time and relative to 

the time from the JVM start. 

2. CMS Final Remark – Phase of the collection – “Final Remark” in this occasion – that is marking all live 

objects in the Old Generation, including the references that were created/modified during previous 

concurrent marking phases. 

3. YG occupancy: 387920 K (613440 K) – Current occupancy and capacity of the Young Generation. 

4. [Rescan (parallel) , 0.0085125 secs] – The “Rescan” completes the marking of live objects while 

the application is stopped. In this case the rescan was done in parallel and took 0.0085125 seconds. 

5. weak refs processing, 0.0000243 secs]65.559  – First of the sub-phases that is processing weak 

references along with the duration and timestamp of the phase. 

6. class unloading, 0.0013120 secs]65.560  – Next sub-phase that is unloading the unused classes, 

with the duration and timestamp of the phase. 

7. scrub string table, 0.0001759 secs – Final sub-phase that is cleaning up symbol and string tables 

which hold class-level metadata and internalized string respectively. Clock time of the pause is also 

included. 

8. 10812086K(11901376K) – Occupancy and the capacity of the Old Generation after the phase. 

9. 11200006K(12514816K) – Usage and the capacity of the total heap after the phase. 

10. 0.0110730 secs – Duration of the phase. 

11. [Times: user=0.06 sys=0.00, real=0.01 secs] – Duration of the pause, measured in user, system 

and real time categories. 
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After the five marking phases, all live objects in the Old Generation are marked and now garbage collector is 

going to reclaim all unused objects by sweeping the Old Generation: 

Phase 6: Concurrent Sweep. Performed concurrently with the application, without the need for the stop-the-

world pauses. The purpose of the phase is to remove unused objects and to reclaim the space occupied by 

them for future use. 

2015-05-26T16:23:08.458-0200: 65.561: [CMS-concurrent-sweep-start] 

2015-05-26T16:23:08.485-0200: 65.588: [CMS-concurrent-sweep1: 0.027/0.027 secs2] 

[[Times: user=0.03 sys=0.00, real=0.03 secs] 3 

1. CMS-concurrent-sweep – Phase of the collection “Concurrent Sweep” in this occasion, sweeping 

unmarked and thus unused objects to reclaim space. 

2. 0.027/0.027 secs – Duration of the phase showing elapsed time and wall clock time correspondingly. 

3. [Times: user=0.03 sys=0.00, real=0.03 secs] – “Times” section is less meaningful on concurrent 

phases, as it is measured from the start of the concurrent marking and includes more than just the work 

done for the concurrent marking. 

Phase 7: Concurrent Reset. Concurrently executed phase, resetting inner data structures of the CMS algorithm 

and preparing them for the next cycle. 

2015-05-26T16:23:08.485-0200: 65.589: [CMS-concurrent-reset-start] 

2015-05-26T16:23:08.497-0200: 65.601: [CMS-concurrent-reset1: 0.012/0.012 secs2] 

[[Times: user=0.01 sys=0.00, real=0.01 secs]3 

1. CMS-concurrent-reset – The phase of the collection – “Concurrent Reset” in this occasion – that is 

resetting inner data structures of the CMS algorithm and preparing for the next collection. 

2. 0.012/0.012 secs – Duration of the the phase, measuring elapsed and wall clock time respectively. 

3. [Times: user=0.01 sys=0.00, real=0.01 secs] – The “Times” section is less meaningful on 

concurrent phases, as it is measured from the start of the concurrent marking and includes more than just 

the work done for the concurrent marking. 

All in all, the CMS garbage collector does a great job at reducing the pause durations by offloading a great deal 

of the work to concurrent threads that do not require the application to stop. However, it, too, has some 

drawbacks, the most notable of them being the Old Generation fragmentation and the lack of predictability in 

pause durations in some cases, especially on large heaps. 

G1 – Garbage First 
One of the key design goals of G1 was to make the duration and distribution of stop-the-world pauses due to 

garbage collection predictable and configurable. In fact, Garbage-First is a soft real-time garbage collector, 

meaning that you can set specific performance goals to it. You can request the stop-the-world pauses to be no 

longer than x milliseconds within any given y-millisecond long time range, e.g. no more than 5 milliseconds in 

any given second. Garbage-First GC will do its best to meet this goal with high probability (but not with certainty, 

that would be hard real-time). 

 

To achieve this, G1 builds upon a number of insights. First, the heap does not have to be split into contiguous 

Young and Old generation. Instead, the heap is split into a number (typically about 2048) smaller heap 
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regions that can house objects. Each region may be an Eden region, a Survivor region or an Old region. The 

logical union of all Eden and Survivor regions is the Young Generation, and all the Old regions put together is 

the Old Generation: 

 

This allows the GC to avoid collecting the entire heap at once, and instead approach the problem incrementally: 

only a subset of the regions, called the collection set will be considered at a time. All the Young regions are 

collected during each pause, but some Old regions may be included as well: 

 

Another novelty of G1 is that during the concurrent phase it estimates the amount of live data that each region 

contains. This is used in building the collection set: the regions that contain the most garbage are collected first. 

Hence the name: garbage-first collection. 

To run the JVM with the G1 collector enabled, run your application as 

java XX:+UseG1GC com.mypackages.MyExecutableClass 

Evacuation Pause: Fully Young 

In the beginning of the application’s lifecycle, G1 does not have any additional information from the not-yet-

executed concurrent phases, so it initially functions in the fully-young mode. When the Young Generation fills 

up, the application threads are stopped, and the live data inside the Young regions is copied to Survivor regions, 

or any free regions that thereby become Survivor. 

The process of copying these is called Evacuation, and it works in pretty much the same way as the other Young 

collectors we have seen before. The full logs of evacuation pauses are rather large, so, for simplicity’s sake we 

will leave out a couple of small bits that are irrelevant in the first fully-young evacuation pause. We will get back 

to them after the concurrent phases are explained in greater detail. In addition, due to the sheer size of the log 

record, the parallel phase details and “Other” phase details are extracted to separate sections: 
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0.134: [GC pause (G1 Evacuation Pause) (young), 0.0144119 secs]1 

    [Parallel Time: 13.9 ms, GC Workers: 8] 2 

        … 3 

    [Code Root Fixup: 0.0 ms]4 

    [Code Root Purge: 0.0 ms]5 

    [Clear CT: 0.1 ms] 

    [Other: 0.4 ms]6 

        … 7 

    [Eden: 24.0M(24.0M)->0.0B(13.0M) 8Survivors: 0.0B->3072.0K 9Heap: 24.0M(256.0M)-

>21.9M(256.0M)] 10 

    [Times: user=0.04 sys=0.04, real=0.02 secs] 11 

1. 0.134: [GC pause (G1 Evacuation Pause) (young), 0.0144119 secs] – G1 pause cleaning only (young) 

regions. The pause started 134ms after the JVM startup and the duration of the pause was 0.0144 seconds 

measured in wall clock time. 

2. [Parallel Time: 13.9 ms, GC Workers: 8] – Indicating that for 13.9 ms (real time) the following activities were 

carried out by 8 threads in parallel 

3. … – Cut for brevity, see the following section below for the details. 

4. [Code Root Fixup: 0.0 ms] – Freeing up the data structures used for managing the parallel activities. Should 

always be near-zero. This is done sequentially. 

5. [Code Root Purge: 0.0 ms] – Cleaning up more data structures, should also be very fast, but non 

necessarily almost zero. This is done sequentially. 

6. [Other: 0.4 ms] – Miscellaneous other activities, many of which are also parallelized 

7. … – See the section below for details 

8. [Eden: 24.0M(24.0M)->0.0B(13.0M) – Eden usage and capacity before and after the pause 

9. Survivors: 0.0B->3072.0K – Space used by Survivor regions before and after the pause 

10. Heap: 24.0M(256.0M)->21.9M(256.0M)] – Total heap usage and capacity before and after the pause. 

11. [Times: user=0.04 sys=0.04, real=0.02 secs] – Duration of the GC event, measured in different categories: 

o user – Total CPU time that was consumed by Garbage Collector threads during this collection 

o sys – Time spent in OS calls or waiting for system event 

o real – Clock time for which your application was stopped. With the parallelizable activities during GC 

this number is ideally close to (user time + system time) divided by the number of threads used by 

Garbage Collector. In this particular case 8 threads were used. Note that due to some activities not 

being parallelizable, it always exceeds the ratio by a certain amount. 

Most of the heavy-lifting is done by multiple dedicated GC worker threads. Their activities are described in the 

following section of the log: 

[Parallel Time: 13.9 ms, GC Workers: 8] 1 

    [GC Worker Start (ms) 2: Min: 134.0, Avg: 134.1, Max: 134.1, Diff: 0.1] 

    [Ext Root Scanning (ms) 3: Min: 0.1, Avg: 0.2, Max: 0.3, Diff: 0.2, Sum: 1.2] 

    [Update RS (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0] 

        [Processed Buffers: Min: 0, Avg: 0.0, Max: 0, Diff: 0, Sum: 0] 

    [Scan RS (ms): Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.0] 
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    [Code Root Scanning (ms) 4: Min: 0.0, Avg: 0.0, Max: 0.2, Diff: 0.2, Sum: 0.2] 

    [Object Copy (ms) 5: Min: 10.8, Avg: 12.1, Max: 12.6, Diff: 1.9, Sum: 96.5] 

    [Termination (ms) 6: Min: 0.8, Avg: 1.5, Max: 2.8, Diff: 1.9, Sum: 12.2] 

        [Termination Attempts7: Min: 173, Avg: 293.2, Max: 362, Diff: 189, Sum: 2346] 

    [GC Worker Other (ms) 8: Min: 0.0, Avg: 0.0, Max: 0.0, Diff: 0.0, Sum: 0.1] 

    GC Worker Total (ms) 9: Min: 13.7, Avg: 13.8, Max: 13.8, Diff: 0.1, Sum: 110.2] 

    [GC Worker End (ms) 10: Min: 147.8, Avg: 147.8, Max: 147.8, Diff: 0.0] 

1. [Parallel Time: 13.9 ms, GC Workers: 8] – Indicating that for 13.9 ms (clock time) the following activities 

were carried out by 8 threads in parallel 

2. [GC Worker Start (ms) – The moment in time at which the workers started their activity, matching the 

timestamp at the beginning of the pause. If Min and Max differ a lot, then it may be an indication that too 

many threads are used or other processes on the machine are stealing CPU time from the garbage 

collection process inside the JVM 

3. [Ext Root Scanning (ms) – How long it took to scan the external (non-heap) roots such as classloaders, 

JNI references, JVM system roots, etc. Shows elapsed time, “Sum” is CPU time 

4. [Code Root Scanning (ms) – How long it took to scan the roots that came from the actual code: local vars, 

etc. 

5. [Object Copy (ms) – How long it took to copy the live objects away from the collected regions. 

6. [Termination (ms) – How long it took for the worker threads to ensure that they can safely stop and that 

there’s no more work to be done, and then actually terminate 

7. [Termination Attempts – How many attempts worker threads took to try and terminate. An attempt is failed 

if the worker discovers that there’s in fact more work to be done, and it’s too early to terminate. 

8. [GC Worker Other (ms) – Other miscellaneous small activities that do not deserve a separate section in 

the logs. 

9. GC Worker Total (ms) – How long the worker threads have worked for in total 

10. [GC Worker End (ms) – The timestamp at which the workers have finished their jobs. Normally they should 

be roughly equal, otherwise it may be an indication of too many threads hanging around or a noisy neighbor 

Additionally, there are some miscellaneous activities that are performed during the Evacuation pause. We will 

only cover a part of them in this section. The rest will be covered later. 

[Other: 0.4 ms] 1 

    [Choose CSet: 0.0 ms] 

    [Ref Proc: 0.2 ms]2 

    [Ref Enq: 0.0 ms] 3 

    [Redirty Cards: 0.1 ms] 

    [Humongous Register: 0.0 ms] 

    [Humongous Reclaim: 0.0 ms] 

    [Free CSet: 0.0 ms] 4 

1. [Other: 0.4 ms] – Miscellaneous other activities, many of which are also parallelized 

2. [Ref Proc: 0.2 ms] – The time it took to process non-strong references: clear them or determine that no 

clearing is needed. 
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3. [Ref Enq: 0.0 ms] – The time it took to enqueue the remaining non-strong references to the appropriate 

ReferenceQueue 

4. [Free CSet: 0.0 ms] – The time it takes to return the freed regions in the collection set so that they are 

available for new allocations. 

Concurrent Marking 

The G1 collector builds up on many concepts of CMS from the previous section, so it is a good idea to make 

sure that you have a sufficient understanding of it before proceeding. Even though it differs in a number of ways, 

the goals of the Concurrent Marking are very similar.  G1 Concurrent Marking uses the Snapshot-At-The-

Beginning approach that marks all the objects that were live at the beginning of the marking cycle, even if they 

have turned into garbage meanwhile. The information on which objects are live allows to build up the liveness 

stats for each region so that the collection set could be efficiently chosen afterwards. 

This information is then used to perform garbage collection in the Old regions. It can happen fully concurrently, 

if the marking determines that a region contains only garbage, or during a stop-the-world evacuation pause for 

Old regions that contain both garbage and live objects. 

Concurrent Marking starts when the overall occupancy of the heap is large enough. By default, it is 45%, but 

this can be changed by the InitiatingHeapOccupancyPercent JVM option. Like in CMS, Concurrent Marking 

in G1 consists of a number of phases, some of them fully concurrent, and some of them requiring the application 

threads to be stopped. 

Phase 1: Initial Mark. This phase marks all the objects directly reachable from the GC roots. In CMS, it required 

a separate stop-the world pause, but in G1 it is typically piggy-backed on an Evacuation Pause, so its overhead 

is minimal. You can notice this pause in GC logs by the “(initial-mark)” addition in the first line of an Evacuation 

Pause: 

1.631: [GC pause (G1 Evacuation Pause) (young) (initial-mark), 0.0062656 secs] 

Phase 2: Root Region Scan. This phase marks all the live objects reachable from the so-called root regions, 

i.e. the ones that are not empty and that we might end up having to collect in the middle of the marking cycle. 

Since moving stuff around in the middle of concurrent marking will cause trouble, this phase has to complete 

before the next evacuation pause starts. If it has to start earlier, it will request an early abort of root region scan, 

and then wait for it to finish. In the current implementation, the root regions are the survivor regions: they are the 

bits of Young Generation that will definitely be collected in the next Evacuation Pause. 

1.362: [GC concurrent-root-region-scan-start] 

1.364: [GC concurrent-root-region-scan-end, 0.0028513 secs] 

Phase 3. Concurrent Mark. This phase is very much similar to that of CMS: it simply walks the object graph 

and marks the visited objects in a special bitmap. To ensure that the semantics of snapshot-at-the beginning 

are met, G1 GC requires that all the concurrent updates to the object graph made by the application threads 

leave the previous reference known for marking purposes. 

This is achieved by the use of the Pre-Write barriers (not to be confused with Post-Write barriers discussed later 

and memory barriers that relate to multithreaded programming). Their function is to, whenever you write to a 
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field while G1 Concurrent Marking is active, store the previous referee in the so-called log buffers, to be 

processed by the concurrent marking threads. 

1.364: [GC concurrent-mark-start] 

1.645: [GC concurrent-mark-end, 0.2803470 secs] 

Phase 4. Remark. This is a stop-the-world pause that, like previously seen in CMS, completes the marking 

process. For G1, it briefly stops the application threads to stop the inflow of the concurrent update logs and 

processes the little amount of them that is left over, and marks whatever still-unmarked objects that were live 

when the concurrent marking cycle was initiated. This phase also performs some additional cleaning, e.g. 

reference processing (see the Evacuation Pause log) or class unloading. 

1.645: [GC remark 1.645: [Finalize Marking, 0.0009461 secs] 1.646: [GC ref-proc, 0.0000417 

secs] 1.646: [Unloading, 0.0011301 secs], 0.0074056 secs] 

[Times: user=0.01 sys=0.00, real=0.01 secs] 

Phase 5. Cleanup. This final phase prepares the ground for the upcoming evacuation phase, counting all the 

live objects in the heap regions, and sorting these regions by expected GC efficiency. It also performs all the 

house-keeping activities required to maintain the internal state for the next iteration of concurrent marking. 

Last but not least, the regions that contain no live objects at all are reclaimed in this phase. Some parts of this 

phase are concurrent, such as the empty region reclamation and most of the liveness calculation, but it also 

requires a short stop-the-world pause to finalize the picture while the application threads are not interfering. The 

logs for such stop-the-world pauses would be similar to: 

1.652: [GC cleanup 1213M->1213M(1885M), 0.0030492 secs] 

[Times: user=0.01 sys=0.00, real=0.00 secs] 

In case when some heap regions that only contain garbage were discovered, the pause format can look a bit 

different, similar to: 

1.872: [GC cleanup 1357M->173M(1996M), 0.0015664 secs] 

[Times: user=0.01 sys=0.00, real=0.01 secs] 

1.874: [GC concurrent-cleanup-start] 

1.876: [GC concurrent-cleanup-end, 0.0014846 secs] 

Evacuation Pause: Mixed 

It’s a pleasant case when concurrent cleanup can free up entire regions in Old Generation, but it may not always 

be the case. After Concurrent Marking has successfully completed, G1 will schedule a mixed collection that will 

not only get the garbage away from the young regions, but also throw in a bunch of Old regions to the collection 

set. 

A mixed Evacuation pause does not always immediately follow the end of the concurrent marking phase. There 

is a number of rules and heuristics that affect this. For instance, if it was possible to free up a large portion of 

the Old regions concurrently, then there is no need to do it. 
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There may, therefore, easily be a number of fully-young evacuation pauses between the end of concurrent 

marking and a mixed evacuation pause. 

The exact number of Old regions to be added to the collection set, and the order in which they are added, is 

also selected based on a number of rules. These include the soft real-time performance goals specified for the 

application, the liveness and gc efficiency data collected during concurrent marking, and a number of 

configurable JVM options. The process of a mixed collection is largely the same as we have already reviewed 

earlier for fully-young gc, but this time we will also cover the subject of remembered sets. 

Remembered sets are what allows the independent collection of different heap regions. For instance, when 

collecting region A,B and C, we have to know whether or not there are references to them from regions D and 

E to determine their liveness. But traversing the whole heap graph would take quite a while and ruin the whole 

point of incremental collection, therefore an optimization is employed. Much like we have the Card Table for 

independently collecting Young regions in other GC algorithms, we have Remembered Sets in G1. 

As shown in the illustration below, each region has a remembered set that lists the references pointing to this 

region from the outside. These references will then be regarded as additional GC roots. Note that objects in Old 

regions that were determined to be garbage during concurrent marking will be ignored even if there are outside 

references to them: the referents are also garbage in that case. 

 

What happens next is the same as what other collectors do: multiple parallel GC threads figure out what objects 

are live and which ones are garbage: 

 

And, finally, the live objects are moved to survivor regions, creating new if necessary. The now empty regions 

are freed and can be used for storing objects in again. 
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To maintain the remembered sets, during the runtime of the application, a Post-Write Barrier is issued whenever 

a write to a field is performed. If the resulting reference is cross-region, i.e. pointing from one region to another, 

a corresponding entry will appear in the Remembered Set of the target region. To reduce the overhead that the 

Write Barrier introduces, the process of putting the cards into the Remembered Set is asynchronous and 

features quite a number of optimizations. But basically it boils down to the Write Barrier putting the dirty card 

information into a local buffer, and a specialized GC thread picking it up and propagating the information to the 

remembered set of the referred region. 

In the mixed mode, the logs publish certain new interesting aspects when compared to the fully young mode: 

[Update RS (ms) 1: Min: 0.7, Avg: 0.8, Max: 0.9, Diff: 0.2, Sum: 6.1] 

[Processed Buffers2: Min: 0, Avg: 2.2, Max: 5, Diff: 5, Sum: 18] 

[Scan RS (ms)3: Min: 0.0, Avg: 0.1, Max: 0.2, Diff: 0.2, Sum: 0.8] 

[Clear CT: 0.2 ms]4 

[Redirty Cards: 0.1 ms] 5 

1. [Update RS (ms) – Since the Remembered Sets are processed concurrently, we have to make sure that 

the still-buffered cards are processed before the actual collection begins. If this number is high, then the 

concurrent GC threads are unable to handle the load. It may be, e.g., because of an overwhelming number 

of incoming field modifications, or insufficient CPU resources. 

2. [Processed Buffers – How many local buffers each worker thread has processed. 

3. [Scan RS (ms) – How long it took to scan the references coming in from remembered sets. 

4. [Clear CT: 0.2 ms] – Time to clean the cards in the card table. Cleaning simply removes the “dirty” status 

that was put there to signify that a field was updated, to be used for Remembered Sets. 

5. [Redirty Cards: 0.1 ms] – The time it takes to mark the appropriate locations in the card table as dirty. 

Appropriate locations are defined by the mutations to the heap that GC does itself, e.g. while enqueuing 

references. 

Summary 

This should give one a sufficient basic understanding of how G1 functions. There are, of course, still quite some 

implementation details that we have left out for brevity, like dealing with humongous objects. All things 

considered, G1 is the most technologically advanced production-ready collector available in HotSpot. On top of 

that, it is being relentlessly improved by the HotSpot Engineers, with new optimizations or features coming in 

with newer java versions. 
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As we have seen, G1 addressed a wide range of problems that CMS has, starting from pause predictability and 

ending with heap fragmentation. Given an application not constrained by CPU utilization, but very sensitive to 

the latency of individual operations, G1 is very likely to be the best available choice for HotSpot users, especially 

when running the latest versions of Java. However, these latency improvements do not come for free: throughput 

overhead of G1 is larger thanks to the additional write barriers and more active background threads. So, if the 

application is throughput-bound or is consuming 100% of CPU, and does not care as much about individual 

pause durations, then CMS or even Parallel may be better choices. 

The only viable way to select the right GC algorithm and settings is through trial and errors, but we do give the 

general guidelines in the next chapter. 

Note that G1 will probably be the default GC for Java 9: http://openjdk.java.net/jeps/248 

Shenandoah 

We have outlined all of the production-ready algorithms in HotSpot that you can just take and use right away. 

There is another one in the making, a so-called Ultra-Low-Pause-Time Garbage Collector. It is aimed for large 

multi-core machines with large heaps, the goal is to manage heaps of 100GB and larger with pauses of 10ms 

or shorter. This is traded off against throughput: the implementers are aiming at a no more than 10% of a 

performance penalty for applications with no GC pauses. 

We are not going to go into the implementation details before the new algorithm is released as production-ready, 

but it also builds upon many of the ideas already covered in earlier chapters, such as concurrent marking and 

incremental collecting. It does a lot of things differently, however. It does not split the heap into multiple 

generations, instead having a single space only. That’s right, Shenandoah is not a generational garbage 

collector. This allows it to get rid of card tables and remembered sets. It also uses forwarding pointers and a 

Brooks style read barrier to allow for concurrent copying of live objects, thus reducing the number and duration 

of pauses. 

A lot of more detailed and up-to-date information about Shenandoah is available on the Internet, for instance in 

this blog: https://rkennke.wordpress.com/ 

 

 

http://openjdk.java.net/jeps/248
https://rkennke.wordpress.com/
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GC Tuning: Basics 
Tuning garbage collection is no different from any other performance-tuning activity. It is easy to fall into the trap 

of randomly tweaking one of the 200 GC-related JVM parameters or to start changing random parts of your 

application code. Instead, following a simple process will guarantee that you are actually moving towards the 

right target while being transparent about the progress: 

1. State your performance goals 

2. Run tests 

3. Measure the results 

4. Compare the results with the goals 

5. If goals are not met, make a change and go back to running tests 

So, as the first step we need to set clear performance goals in regards of Garbage Collection. The goals fall 

into three categories, which are common to all performance monitoring and management topics: 

 Latency 

 Throughput 

 Capacity 

After explaining the concepts in general, we will demonstrate how to apply these goals in the context of Garbage 

Collection. If you are already familiar with the concepts of latency, throughput and capacity, you may decide to 

skip the next section. 

Core Concepts 
Let us start with an example from manufacturing by observing an assembly line in a factory. The line is 

assembling bikes from ready-made components. Bikes are built on this line in a sequential manner. Monitoring 

the line in action, we measure that it takes four hours to complete a bike from the moment the frame enters the 

line until the assembled bike leaves the line at the other end. 

 

Continuing our observations we can also see that one bike is assembled after each minute, 24 hours a day, 

every day. Simplifying the example and ignoring maintenance windows, we can forecast that in any given hour 

such an assembly line assembles 60 bikes. 

Equipped with these two measurements, we now possess crucial information about the current performance of 

the assembly line in regards of latency and throughput: 

 Latency of the assembly line: 4 hours 

 Throughput of the assembly line: 60 bikes/hour 

Notice that latency is measured in time units suitable for the task at hand – anything from nanoseconds to 

millennia can be a good choice. Throughput of a system is measured in completed operations per time unit. 



Plumbr Java Garbage Collection Handbook 2015 40 

Operations can be anything relevant to the specific system. In this example the chosen time unit was hours and 

operations were the assembled bikes. 

Having been equipped with the definitions of latency and throughput, let us carry out a performance tuning 

exercise in the very same factory. The demand for the bikes has been steady for a while and the assembly line 

has kept producing bikes with the latency of four hours and the throughput of 60 bikes/hour for months. Let us 

now imagine a situation where the sales team has been successful and the demand for the bikes suddenly 

doubles. Instead of the usual 60*24 = 1,440 bikes/day the customers demand twice as many. The performance 

of the factory is no longer satisfactory and something needs to be done. 

The factory manager seemingly correctly concludes that the latency of the system is not a concern – instead he 

should focus on the total number of bikes produced per day. Coming to this conclusion and assuming he is well 

funded, the hypothetical manager would immediately take the necessary steps to improve throughput by adding 

capacity. 

As a result we would now be observing not one but two identical assembly lines in the same factory. Both of 

these assembly lines would be assembling the very same bike every minute of every day. By doing this, our 

imaginary factory has doubled the number of bikes produced per day. Instead of the 1,440 bikes the factory is 

now capable of shipping 2,880 bikes each day. It is important to note that we have not reduced the time to 

complete an individual bike by even a millisecond – it still takes four hours to complete a bike from start to finish. 

 

 

In the example above a performance optimization task was carried out, coincidentally impacting 

both throughput and capacity. As in any good example we started by measuring the system’s current 

performance, then set a new target and optimized the system only in the aspects required to meet the target. 

In this example an important decision was made – the focus was on increasing throughput, not on reducing 

latency. While increasing the throughput, we also needed to increase the capacity of the system. Instead of a 

single assembly line we now needed two assembly lines to produce the required quantity. So in this case the 

added throughput was not free, the solution needed to be scaled out in order to meet the increased throughput 

requirement. 

An important alternative should also be considered for the performance problem at hand. The seemingly non-

related latency of the system actually hides a different solution to the problem. If the latency of the assembly line 

could have been reduced from 1 minute to 30 seconds, the very same increase of throughput would suddenly 

be possible without any additional capacity. 

Whether or not reducing latency was possible or economical in this case is not relevant. What is important is a 

concept very similar to software engineering – you can almost always choose between two solutions to a 
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performance problem. You can either throw more hardware towards the problem or spend time improving the 

poorly performing code. 

Latency 

Latency goals for the GC have to be derived from generic latency requirements. Generic latency requirements 

are typically expressed in a form similar to the following: 

 All user transactions must respond in less than 10 seconds 

 90% of the invoice payments must be carried out in under 3 seconds 

 Recommended products must be rendered to a purchase screen in less than 100 ms 

When facing performance goals similar to the above, we would need to make sure that the duration of GC 

pauses during the transaction does not contribute too much to violating the requirements. “Too much” is 

application-specific and needs to take into account other factors contributing to latency including round-trips to 

external data sources, lock contention issues and other safe points among these. 

Let us assume our performance requirements state that 90% of the transactions to the application need to 

complete under 1,000 ms and no transaction can exceed 10,000 ms. Out of those generic latency requirements 

let us again assume that GC pauses cannot contribute more than 10%. From this, we can conclude that 90% of 

GC pauses have to complete under 100 ms, and no GC pause can exceed 1,000 ms. For simplicity’s sake let 

us ignore in this example multiple pauses that can occur during the same transaction. 

Having formalized the requirement, the next step is to measure pause durations. There are many tools for the 

job, covered in more detail in the chapter on Tooling, but in this section, let us use GC logs, namely for the 

duration of GC pauses. The information required is present in different log snippets so let us take a look which 

parts of date/time data are actually relevant, using the following example: 

2015-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics) [PSYoungGen: 93677K-

>70109K(254976K)] [ParOldGen: 499597K->511230K(761856K)] 593275K->581339K(1016832K), 

[Metaspace: 2936K->2936K(1056768K)], 0.0713174 secs] [Times: user=0.21 sys=0.02, 

real=0.07 secs 

The example above expresses a single GC pause triggered at 13:34:16 on June 4, 2015, just 2,578 ms after 

the JVM was started. 

The event stopped the application threads for 0.0713174 seconds. Even though it took 210 ms of CPU times 

on multiple cores, the important number for us to measure is the total stop time for application threads, which in 

this case, where parallel GC was used on a multi-core machine, is equal to a bit more than 70 ms. This specific 

GC pause is thus well under the required 100 ms threshold and fulfils both requirements. 

Extracting information similar to the example above from all GC pauses, we can aggregate the numbers and 

see whether or not we are violating the set requirements for any of the pause events triggered. 

Throughput 

Throughput requirements are different from latency requirements. The only similarity that the throughput 

requirements share with latency is the fact that again, these requirements need to be derived from generic 

throughput requirements. Generic requirements for throughput can be similar to the following: 

 The solution must be able to process 1,000,000 invoices/day 

https://plumbr.eu/handbook/gc-tuning-measuring
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 The solution must support 1,000 authenticated users each invoking one of the functions A, B or C every five 

to ten seconds 

 Weekly statistics for all customers have to be composed in no more than six hours each Sunday night 

between 12 PM and 6 AM 

So, instead of setting requirements for a single operation, the requirements for throughput specify how many 

operations the system must process in a given time unit. Similar to the latency requirements, the GC tuning part 

now requires determining the total time that can be spent on GC during the time measured. How much is 

tolerable for the particular system is again application-specific, but as a rule of thumb, anything over 10% would 

look suspicious. 

Let us now assume that the requirement at hand foresees that the system processes 1,000 transactions per 

minute. Let us also assume that the total duration of GC pauses during any minute cannot exceed six seconds 

(or 10%) of this time. 

Having formalized the requirements, the next step would be to harvest the information we need. The source to 

be used in the example is again GC logs, from which we would get information similar to the following: 

2015-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics) [PSYoungGen: 93677K-

>70109K(254976K)] [ParOldGen: 499597K->511230K(761856K)] 593275K->581339K(1016832K), 

[Metaspace: 2936K->2936K(1056768K)], 0.0713174 secs] [Times: user=0.21 sys=0.02, 

real=0.07 secs 

 

This time we are interested in user and system times instead of real time. In this case we should focus on 23 

milliseconds (21 + 2 ms in user and system times) during which the particular GC pause kept CPUs busy. Even 

more important is the fact that the system was running on a multi-core machine, translating to the actual stop-

the-world pause of 0.0713174 seconds, which is the number to be used in the following calculations. 

Extracting the information similar to the above from the GC logs across the test period, all that is left to be done 

is to verify the total duration of the stop-the-world pauses during each minute. In case the total duration of the 

pauses does not exceed 6,000ms or six seconds in any of these one-minute periods, we have fulfilled our 

requirement. 

Capacity 

Capacity requirements put additional constraints on the environment where the throughput and latency goals 

can be met. These requirements might be expressed either in terms of computing resources or in cold hard 

cash. The ways in which such requirements can be described can, for example, take the following form: 

 The system must be deployed on Android devices with less than 512 MB of memory 

 The system must be deployed on Amazon EC2. The maximum required instance size must not exceed the 

configuration c3.xlarge (8 G, 4 cores) 

 The monthly invoice from Amazon EC2 for running the system must not exceed $12,000 

Thus, capacity has to be taken into account when fulfilling the latency and throughput requirements. With 

unlimited computing power, any kind of latency and throughput targets could be met, yet in the real world the 

budget and other constraints have a tendency to set limits on the resources one can use. 
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Example 
Now that we have covered the three dimensions of performance tuning, we can start investigating setting and 

hitting GC performance goals in practice. 

For this purpose, let us take a look at an example code: 

//imports skipped for brevity 
public class Producer implements Runnable { 
 
  private static ScheduledExecutorService executorService = 
Executors.newScheduledThreadPool(2); 
 
  private Deque<byte[]> deque; 
  private int objectSize; 
  private int queueSize; 
 
  public Producer(int objectSize, int ttl) { 
    this.deque = new ArrayDeque<byte[]>(); 
    this.objectSize = objectSize; 
    this.queueSize = ttl * 1000; 
  } 
 
  @Override 
  public void run() { 
    for (int i = 0; i < 100; i++) { 
      deque.add(new byte[objectSize]); 
      if (deque.size() > queueSize) { 
        deque.poll(); 
      } 
    } 
  } 
 
  public static void main(String[] args) throws InterruptedException { 
    executorService.scheduleAtFixedRate(new Producer(200 * 1024 * 1024 / 1000, 5), 0, 
100, TimeUnit.MILLISECONDS); 
    executorService.scheduleAtFixedRate(new Producer(50 * 1024 * 1024 / 1000, 120), 0, 
100, TimeUnit.MILLISECONDS); 
    TimeUnit.MINUTES.sleep(10); 
    executorService.shutdownNow(); 
  } 
} 

The code submits two jobs to run every 100 ms. Each job emulates objects with a specific lifespan: it creates 

objects, lets them leave for a predetermined amount of time and then forgets about them, allowing GC to reclaim 

the memory. 

When running the example with GC logging turned on with the following parameters: 

-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps 

we immediately see the impact of GC in the log files, similarly to the following: 

2015-06-04T13:34:16.119-0200: 1.723: [GC (Allocation Failure) [PSYoungGen: 114016K-

>73191K(234496K)] 421540K->421269K(745984K), 0.0858176 secs] [Times: user=0.04 sys=0.06, 

real=0.09 secs]  
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2015-06-04T13:34:16.738-0200: 2.342: [GC (Allocation Failure) [PSYoungGen: 234462K-

>93677K(254976K)] 582540K->593275K(766464K), 0.2357086 secs] [Times: user=0.11 sys=0.14, 

real=0.24 secs]  

2015-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics) [PSYoungGen: 93677K-

>70109K(254976K)] [ParOldGen: 499597K->511230K(761856K)] 593275K->581339K(1016832K), 

[Metaspace: 2936K->2936K(1056768K)], 0.0713174 secs] [Times: user=0.21 sys=0.02, 

real=0.07 secs] 

Based on the information in the log we can start improving the situation with three different goals in mind: 

1. Making sure the worst-case GC pause does not exceed a predetermined threshold 

2. Making sure the total time during which application threads are stopped does not exceed a predetermined 

threshold 

3. Reducing infrastructure costs while making sure we can still achieve reasonable latency and/or throughput 

targets 

For this, the code above was run for 10 minutes on three different configurations providing three very different 

results summarized in the following table: 

Heap GC Algorithm Useful work Longest pause 

-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms 

-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms 

-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms 

The experiment ran the same code with different GC algorithms and different heap sizes to measure the duration 

of Garbage Collection pauses with regards to latency and throughput. Details of the experiments and an 

interpretation of the results are given in the following chapters. 

Note that in order to keep the example as simple as possible only a limited amount of input parameters were 

changed, for example the experiments do not test on different number of cores or with a different heap layout. 

Tuning for Latency 

Let us assume we have a requirement stating that all jobs must be processed in under 1,000 ms. Knowing 

that the actual job processing takes just 100 ms we can simplify and deduct the latency requirement for individual 

GC pauses. Our requirement now states that no GC pause can stop the application threads for longer than 

900 ms. Answering this question is easy, one would just need to parse the GC log files and find the maximum 

pause time for an individual GC pause. 

Looking again at the three configuration options used in the test: 

Heap GC Algorithm Useful work Longest pause 

-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms 

-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms 

-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms 

we can see that there is one configuration that already matches this requirement. Running the code with: 

java -Xmx12g -XX:+UseConcMarkSweepGC Producer 
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results in a maximum GC pause of 560 ms, which nicely passes the 900 ms threshold set for satisfying the 

latency requirement. If neither the throughput nor the capacity requirements are violated, we can conclude that 

we have fulfilled our GC tuning task and can finish the tuning exercise. 

Tuning for Throughput 

Let us assume that we have a throughput goal to process 13,000,000 jobs/hour. The example configurations 

used again give us a configuration where the requirement is fulfilled: 

Heap GC Algorithm Useful work Longest pause 

-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms 

-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms 

-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms 

Running this configuration as: 

java -Xmx12g -XX:+UseParallelGC Producer 

 

we can see that the CPUs are blocked by GC for 8.5% of the time, leaving 91.5% of the computing power for 

useful work. For simplicity’s sake we will ignore other safe points in the example. Now we have to take into 

account that: 

1. One job is processed in 100 ms by a single core 

2. Thus, in one minute, 60,000 jobs could be processed by one core 

3. In one hour, a single core could thus process 3.6 M jobs 

4. We have four cores available, which could thus process 4 x 3.6 M = 14.4 M jobs in an hour 

 

With this amount of theoretical processing power we can make a simple calculation and conclude that during 

one hour we can in reality process 91.5% of the 14.4 M theoretical maximum resulting in 13,176,000 processed 

jobs/hour, fulfilling our requirement. 

It is important to note that if we simultaneously needed to fulfill the latency requirements set in the previous 

section, we would be in trouble, as the worst-case latency for this case is close to two times of the previous 

configuration. This time the longest GC pause on record was blocking the application threads for 1,104 ms. 

Tuning for Capacity 

Let us assume we have to deploy our solution to the commodity-class hardware with up to four cores and 10 G 

RAM available. From this we can derive our capacity requirement that the maximum heap space for the 

application cannot exceed 8 GB. Having this requirement in place, we would need to turn to the third 

configuration on which the test was run: 

Heap GC Algorithm Useful work Longest pause 

-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms 

-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms 

-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms 

The application is able to run on this configuration as 
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java -Xmx8g -XX:+UseConcMarkSweepGC Producer 

but both the latency and especially throughput numbers fall drastically: 

 GC now blocks CPUs from doing useful work a lot more, as this configuration only leaves 66.3% of the CPUs 

for useful work. As a result, this configuration would drop the throughput from the best-case-scenario 

of 13,176,000 jobs/hour to a meager 9,547,200 jobs/hour 

 Instead of 560 ms we are now facing 1,610 ms of added latency in the worst case 

Walking through the three dimensions it is indeed obvious that you cannot just optimize for “performance” but 

instead need to think in three different dimensions, measuring and tuning both latency and throughput, and 

taking the capacity constraints into account. 
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GC Tuning: Tooling 
Before you can optimize your JVM for more efficient garbage collection, you need to get information about its 

current behavior to understand the impact that GC has on your application and its perception by end users. 

There are multiple ways to observe the work of GC and in this chapter we will cover several different possibilities. 

While observing GC behavior there is raw data provided by the JVM runtime. In addition, there are derived 

metrics that can be calculated based on that raw data. The raw data, for instance, contains: 

 Current occupancy of memory pools, 

 Capacity of memory pools, 

 Durations of individual GC pauses, 

 Duration of the different phases of those pauses. 

The derived metrics include, for example, the allocation and promotion rates of the application. In this chapter 

will talk mainly about ways of acquiring the raw data. The most important derived metrics are described in the 

following chapter discussing the most common GC-related performance problems. 

JMX API 
The most basic way to get GC-related information from the running JVM is via the standard JMX API. This is a 

standardized way for the JVM to expose internal information regarding the runtime state of the JVM. You can 

access this API either programmatically from your own application running inside the very same JVM, or using 

JMX clients. 

Two of the most popular JMX clients are JConsole and JVisualVM (with a corresponding plugin installed). Both 

of these tools are part of the standard JDK distribution, so getting started is easy. If you are running on JDK 

7u40 or later, a third tool bundled into the JDK called Java Mission Control is also available. 

All the JMX clients run as a separate application connecting to the target JVM. The target JVM can be either 

local to the client if running both in the same machine, or remote. For the remote connections from client, JVM 

has to explicitly allow remote JMX connections. This can be achieved by setting a specific system property to 

the port where you wish to enable the JMX RMI connection to arrive: 

java -Dcom.sun.management.jmxremote.port=5432 com.yourcompanyYourApp 

In the example above, the JVM opens port 5432 for JMX connections. 

After connecting your JMX client to the JVM of interest and navigating to the MBeans list, select MBeans under 

the node “java.lang/GarbageCollector”. See below for two screenshots exposing information about GC behavior 

from JVisualVM and Java Mission Control, respectively: 

https://docs.oracle.com/javase/tutorial/jmx/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jvisualvm.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
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As the screenshots above indicate, there are two garbage collectors present. One of these collectors is 

responsible for cleaning the young generation and one for the old generation. The names of those elements 

correspond to the names of the garbage collectors used. In the screenshots above we can see that the particular 

JVM is running with ParallelNew for the young generation and with Concurrent Mark and Sweep for the old 

generation. 

https://plumbr.eu/wp-content/uploads/2015/12/JMX-view.png
https://plumbr.eu/wp-content/uploads/2015/12/JMX-view-Mbean.png
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For each collector the JMX API exposes the following information: 

 CollectionCount – the total number of times this collector has run in this JVM, 

 CollectionTime – the accumulated duration of the collector running time. The time is the sum of the wall-clock 

time of all GC events, 

 LastGcInfo – detailed information about the last garbage collection event. This information contains the 

duration of that event, and the start and end time of the event along with the usage of different memory pools 

before and after the last collection, 

 MemoryPoolNames – names of the memory pools that this collector manages, 

 Name – the name of the garbage collector 

 ObjectName – the name of this MBean, as dictated by JMX specifications, 

 Valid – shows whether this collector is valid in this JVM. I personally have never seen anything but “true” in 

here 

In my experience this information is not enough to make any conclusions about the efficiency of the garbage 

collector. The only case where it can be of any use is when you are willing to build custom software to get JMX 

notifications about garbage collection events. This approach can rarely be used as we will see in the next 

sections, which give better ways of getting beneficial insight into garbage collection activities. 

JVisualVM 
JVisualVM adds extra information to the basic JMX client functionality via a separate plugin called “VisualGC”. 

It provides a real-time view into GC events and the occupancy of different memory regions inside JVM. 

The most common use-case for the Visual GC plugin is the monitoring of the locally running application, when 

an application developer or a performance specialist wants an easy way to get visual information about the 

general behavior of the GC during a test run of the application. 

 

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jvisualvm.html
http://www.oracle.com/technetwork/java/visualgc-136680.html
https://plumbr.eu/wp-content/uploads/2015/12/jvmsualvm-garbage-collection-monitoring.png
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On the left side of the charts you can see the real-time view of the current usages of the different memory pools: 

Metaspace or Permanent Generation, Old Generation, Eden Generation and two Survivor Spaces. 

On the right side, top two charts are not GC related, exposing JIT compilation times and class loading timings. 

The following six charts display the history of the memory pools usages, the number of GC collections of each 

pool and cumulative time of GC for that pool. In addition for each pool its current size, peak usage and maximum 

size are displayed. 

Below is the distribution of objects ages that currently reside in the Young generation. The full discussion of 

objects tenuring monitoring is outside of the scope of this chapter. 

When compared with pure JMX tools, the VisualGC add-on to JVisualVM does offer slightly better insight to the 

JVM, so when you have only these two tools in your toolkit, pick the VisualGC plug-in. If you can use any other 

solutions referred to in this chapter, read on. Alternative options can give you more information and better insight. 

There is however a particular use-case discussed in the “Profilers” section where JVisualVM is suitable for – 

namely allocation profiling, so by no means we are demoting the tool in general, just for the particular use case. 

jstat 
The next tool to look at is also part of the standard JDK distribution. The tool is called “jstat” – a Java Virtual 

Machine statistics monitoring tool. This is a command line tool that can be used to get metrics from the running 

JVM. The JVM connected can again either be local or remote. A full list of metrics that jstat is capable of exposing 

can be obtained by running “jstat -option” from the command line. The most commonly used options are: 

 
+-----------------+---------------------------------------------------------------+ 
|     Option      |                          Displays...                          | 
+-----------------+---------------------------------------------------------------+ 
|class            | Statistics on the behavior of the class loader                | 
|compiler         | Statistics  on  the behavior of the HotSpot Just-In-Time com- | 
|                 | piler                                                         | 
|gc               | Statistics on the behavior of the garbage collected heap      | 
|gccapacity       | Statistics of the capacities of  the  generations  and  their | 
|                 | corresponding spaces.                                         | 
|gccause          | Summary  of  garbage collection statistics (same as -gcutil), | 
|                 | with the cause  of  the  last  and  current  (if  applicable) | 
|                 | garbage collection events.                                    | 
|gcnew            | Statistics of the behavior of the new generation.             | 
|gcnewcapacity    | Statistics of the sizes of the new generations and its corre- | 
|                 | sponding spaces.                                              | 
|gcold            | Statistics of the behavior of the old and  permanent  genera- | 
|                 | tions.                                                        | 
|gcoldcapacity    | Statistics of the sizes of the old generation.                | 
|gcpermcapacity   | Statistics of the sizes of the permanent generation.          | 
|gcutil           | Summary of garbage collection statistics.                     | 
|printcompilation | Summary of garbage collection statistics.                     | 
+-----------------+---------------------------------------------------------------+ 

This tool is extremely useful for getting a quick overview of JVM health to see whether the garbage collector 

behaves as expected. You can run it via “jstat -gc -t PID 1s”, for example, where PID is the process ID of the 

JVM you want to monitor. You can acquire PID via running “jps” to get the list of running Java processes. As a 

result, each second jstat will print a new line to the standard output similar to the following example: 

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jstat.html
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Timestamp  S0C    S1C    S0U    S1U      EC       EU        OC         OU       MC     MU    

CCSC   CCSU   YGC     YGCT    FGC    FGCT     GCT    

200.0    8448.0 8448.0 8448.0  0.0   67712.0  67712.0   169344.0   169344.0  21248.0 

20534.3 3072.0 2807.7     34    0.720  658   133.684  134.404 

201.0   8448.0 8448.0 8448.0  0.0   67712.0  67712.0   169344.0   169343.2  21248.0 

20534.3 3072.0 2807.7     34    0.720  662   134.712  135.432 

202.0   8448.0 8448.0 8102.5  0.0   67712.0  67598.5   169344.0   169343.6  21248.0 

20534.3 3072.0 2807.7     34    0.720  667   135.840  136.559 

203.0   8448.0 8448.0 8126.3  0.0   67712.0  67702.2   169344.0   169343.6  21248.0 

20547.2 3072.0 2807.7     34    0.720  669   136.178  136.898 

204.0   8448.0 8448.0 8126.3  0.0   67712.0  67702.2   169344.0   169343.6  21248.0 

20547.2 3072.0 2807.7     34    0.720  669   136.178  136.898 

205.0   8448.0 8448.0 8134.6  0.0   67712.0  67712.0   169344.0   169343.5  21248.0 

20547.2 3072.0 2807.7     34    0.720  671   136.234  136.954 

206.0   8448.0 8448.0 8134.6  0.0   67712.0  67712.0   169344.0   169343.5  21248.0 

20547.2 3072.0 2807.7     34    0.720  671   136.234  136.954 

207.0   8448.0 8448.0 8154.8  0.0   67712.0  67712.0   169344.0   169343.5  21248.0 

20547.2 3072.0 2807.7     34    0.720  673   136.289  137.009 

208.0   8448.0 8448.0 8154.8  0.0   67712.0  67712.0   169344.0   169343.5  21248.0 

20547.2 3072.0 2807.7     34    0.720  673   136.289  137.009 

 

Let us interpret the output above using the explanation given to output attributes in the jstat manpage. Using the 

knowledge acquired, we can see that: 

 jstat connected to the JVM 200 seconds from the time this JVM was started. This information is present in 

the first column labeled “Timestamp”. As seen from the very same column, the jstat harvests information 

from the JVM once every second as specified in the “1s” argument given in the command. 

 From the first line we can see that up to this point the young generation has been cleaned 34 times and the 

whole heap has been cleaned 658 times, as indicated by the “YGC” and “FGC” columns, respectively. 

 The young generation garbage collector has been running for a total of 0.720 seconds, as indicated in the 

“YGCT” column. 

 The total duration of the full GC has been 133.684 seconds, as indicated in the “FGCT” column. This should 

immediately catch our eye – we can see that out of the total 200 seconds the JVM has been running, 66% 

of the time has been spent on Full GC cycles. 

The problem becomes even clearer when we look at the next line, harvesting information a second later. 

 Now we can see that there have been four more Full GCs running during the one second between the last 

time jstat printed out the data as indicated in the “FGC” column. 

 These four GC pauses have taken almost the entire second – as seen in the difference in the “FGCT” column. 

Compared to the first row, the Full GC has been running for 928 milliseconds, or 92.8% of the total time. 

 At the same time, as indicated by the “OC” and “OU” columns, we can see that from almost all of the old 

generation capacity of 169,344.0 KB (“OC“), after all the cleaning work that the four collection cycles tried 

http://www.manpagez.com/man/1/jstat/
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to accomplish, 169,344.2 KB (“OU“) is still in use. Cleaning 800 bytes in 928 ms should not be considered 

a normal behavior. 

Only these two rows from the jstat output give us insight that something is terribly wrong with the application. 

Applying the same analytics to the next rows, we can confirm that the problem persists and is getting even 

worse. 

The JVM is almost stalled, with GC eating away more than 90% of the available computing power. And as a 

result of all this cleaning, almost all the old generation still remains in use, further confirming our doubts. As a 

matter of fact, the example died in under a minute later with a “java.lang.OutOfMemoryError: GC overhead limit 

exceeded” error, removing the last remaining doubts whether or not things are truly sour. 

As seen from the example, jstat output can quickly reveal symptoms about JVM health in terms of misbehaving 

garbage collectors. As general guidelines, just looking at the jstat output will quickly reveal the following 

symptoms: 

 Changes in the last column, “GCT”, when compared to the total runtime of the JVM in the “Timestamp” 

column, give information about the overhead of garbage collection. If you see that every second, the value 

in that column increases significantly in comparison to the total runtime, a high overhead is exposed. How 

much GC overhead is tolerable is application-specific and should be derived from the performance 

requirements you have at hand, but as a ground rule, anything more than 10% looks truly suspicious. 

 Rapid changes in the “YGC” and “FGC” columns tracking the young and Full GC counts also tend to expose 

problems. Much too frequent GC pauses when piling up again affect the throughput via adding many stop-

the-world pauses for application threads. 

 When you see that the old generation usage in the “OU” column is almost equal to the maximum capacity of 

the old generation in the “OC” column without a decrease after an increase in the “FGC” column count has 

signaled that old generation collection has occurred, you have exposed yet another symptom of poorly 

performing GC. 

GC logs 
The next source for GC-related information is accessible via garbage collector logs. As they are built in the JVM, 

GC logs give you (arguably) the most useful and comprehensive overview about garbage collector activities. 

GC logs are de facto standard and should be referenced as the ultimate source of truth for garbage collector 

evaluation and optimization. 

A garbage collector log is in plain text and can be either printed out by the JVM to standard output or redirected 

to a file. There are many JVM options related to GC logging. For example, you can log the total time for which 

the application was stopped before and during each GC event (-XX:+PrintGCApplicationStoppedTime) or 

expose the information about different reference types being collected (-XX:+PrintReferenceGC). 

The minimum that each JVM should be logging can be achieved by specifying the following in your startup 

scripts: 

-XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps -XX:+PrintGCDetails -Xloggc:<filename> 

https://plumbr.eu/outofmemoryerror/gc-overhead-limit-exceeded
https://plumbr.eu/outofmemoryerror/gc-overhead-limit-exceeded
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This will instruct JVM to print every GC event to the log file and add the timestamp of each event to the log. The 

exact information exposed to the logs varies depending on the GC algorithm used. When using ParallelGC the 

output should look similar to the following: 

199.879: [Full GC (Ergonomics) [PSYoungGen: 64000K->63998K(74240K)] [ParOldGen: 169318K-

>169318K(169472K)] 233318K->233317K(243712K), [Metaspace: 20427K->20427K(1067008K)], 

0.1473386 secs] [Times: user=0.43 sys=0.01, real=0.15 secs] 

200.027: [Full GC (Ergonomics) [PSYoungGen: 64000K->63998K(74240K)] [ParOldGen: 169318K-

>169318K(169472K)] 233318K->233317K(243712K), [Metaspace: 20427K->20427K(1067008K)], 

0.1567794 secs] [Times: user=0.41 sys=0.00, real=0.16 secs] 

200.184: [Full GC (Ergonomics) [PSYoungGen: 64000K->63998K(74240K)] [ParOldGen: 169318K-

>169318K(169472K)] 233318K->233317K(243712K), [Metaspace: 20427K->20427K(1067008K)], 

0.1621946 secs] [Times: user=0.43 sys=0.00, real=0.16 secs] 

200.346: [Full GC (Ergonomics) [PSYoungGen: 64000K->63998K(74240K)] [ParOldGen: 169318K-

>169318K(169472K)] 233318K->233317K(243712K), [Metaspace: 20427K->20427K(1067008K)], 

0.1547695 secs] [Times: user=0.41 sys=0.00, real=0.15 secs] 

200.502: [Full GC (Ergonomics) [PSYoungGen: 64000K->63999K(74240K)] [ParOldGen: 169318K-

>169318K(169472K)] 233318K->233317K(243712K), [Metaspace: 20427K->20427K(1067008K)], 

0.1563071 secs] [Times: user=0.42 sys=0.01, real=0.16 secs] 

200.659: [Full GC (Ergonomics) [PSYoungGen: 64000K->63999K(74240K)] [ParOldGen: 169318K-

>169318K(169472K)] 233318K->233317K(243712K), [Metaspace: 20427K->20427K(1067008K)], 

0.1538778 secs] [Times: user=0.42 sys=0.00, real=0.16 secs] 

These different formats are discussed in detail in the chapter “GC Algorithms: Implementations”, so if you are 

not familiar with the output, please read this chapter first. If you can already interpret the output above, then you 

are able to deduct that: 

 The log is extracted around 200 seconds after the JVM was started. 

 During the 780 milliseconds present in the logs, the JVM paused five times for GC (we are excluding the 

6th pause as it started, not ended on the timestamp present). All these pauses were full GC pauses. 

 The total duration of these pauses was 777 milliseconds, or 99.6% of the total runtime. 

 At the same time, as seen from the old generation capacity and consumption, almost all of the old 

generation capacity (169,472 kB) remains used (169,318 K) after the GC has repeatedly tried to free up 

some memory. 

 

From the output, we can confirm that the application is not performing well in terms of GC. The JVM is almost 

stalled, with GC eating away more than 99% of the available computing power. And as a result of all this 

cleaning, almost all the old generation still remains in use, further confirming our suspicions. The example 

application, being the same as used in the previous jstat section, died in just a few minutes later with the 

“java.lang.OutOfMemoryError: GC overhead limit exceeded” error, confirming that the problem was severe. 

As seen from the example, GC logs are valuable input to reveal symptoms about JVM health in terms of 

misbehaving garbage collectors. As general guidelines, the following symptoms can quickly be revealed by just 

looking at GC logs: 

https://plumbr.eu/handbook/garbage-collection-algorithms-implementations
https://plumbr.eu/outofmemoryerror/gc-overhead-limit-exceeded


Plumbr Java Garbage Collection Handbook 2015 54 

 Too much GC overhead. When the total time for GC pauses is too long, the throughput of the application 

suffers. The limit is application-specific, but as a general rule anything over 10% already looks suspicious. 

 Excessively long individual pauses. Whenever an individual pause starts taking too long, the latency of the 

application starts to suffer. When the latency requirements require the transactions in the application to 

complete under 1,000 ms, for example, you cannot tolerate any GC pauses taking more than 1,000 ms. 

 Old generation consumption at the limits. Whenever the old generation remains close to being fully utilized 

even after several full GC cycles, you face a situation in which GC becomes the bottleneck, either due to 

under-provisioning resources or due to a memory leak. This symptom always triggers GC overhead to go 

through the roof as well. 

As we can see, GC logs can give us very detailed information about what is going on inside the JVM in relation 

to garbage collection. However, for all but the most trivial applications, this results in vast amounts of data, which 

tend to be difficult to read and interpret by a human being. 

GCViewer 
One way to cope with the information flood in GC logs is to write custom parsers for GC log files to visualize the 

information. In most cases it would not be a reasonable decision due to the complexity of different GC algorithms 

that are producing the information. Instead, a good way would be to start with a solution that already 

exists: GCViewer. 

GCViewer is an open source tool for parsing and analyzing GC log files. The GitHub web page provides a full 

description of all the presented metrics. In the following we will review the most common way to use this tool. 

The first step is to get useful garbage collection log files. They should reflect the usage scenario of your 

application that you are interested in during this performance optimization session. If your operational 

department complains that every Friday afternoon, the application slows down, and if you want to verify whether 

GC is the culprit, there is no point in analyzing GC logs from Monday morning. 

After you have received the log, you can feed it into GCViewer to see a result similar to the following: 

https://github.com/chewiebug/GCViewer
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The chart area is devoted to the visual representation of GC events. The information available includes the sizes 

of all memory pools and GC events. In the picture above, only two metrics are visualized: the total used heap is 

visualized with blue lines and individual GC pause durations with black bars underneath. 

The first interesting thing that we can see from this picture is the fast growth of memory usage. In just around a 

minute the total heap consumption reaches almost the maximum heap available. This indicates a problem – 

almost all the heap is consumed and new allocations cannot proceed, triggering frequent full GC cycles. The 

application is either leaking memory or set to run with under-provisioned heap size. 

The next problem visible in the charts is the frequency and duration of GC pauses. We can see that after the 

initial 30 seconds GC is almost constantly running, with the longest pauses exceeding 1.4 seconds. 

On the right there is small panel with three tabs. Under the “Summary” tab the most interesting numbers are 

“Throughput” and “Number of GC pauses”, along with the “Number of full GC pauses”. Throughput shows the 

portion of the application run time that was devoted to running your application, as opposed to spending time in 

garbage collection. 

In our example we are facing throughput of 6.28%. This means that 93.72% of the CPU time was spent on 

GC. It is a clear symptom of the application suffering – instead of spending precious CPU cycles on actual work, 

it spends most of the time trying to get rid of the garbage. 

The next interesting tab is “Pause”: 

https://plumbr.eu/wp-content/uploads/2015/12/gcviewer-screenshot.png
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The “Pause” tab exposes the totals, averages, minimum and maximum values of GC pauses, both as a grand 

total and minor/major pauses separately. Optimizing the application for low latency, this gives the first glimpse 

of whether or not you are facing pauses that are too long. Again, we can get confirmation that both 

the accumulated pause duration of 634.59 seconds and the total number of GC pauses of 3,938 is much 

too high, considering the total runtime of just over 11 minutes. 

More detailed information about GC events can be obtained from the “Event details” tab of the main area: 

 

Here you can see a summary of all the important GC events recorded in the logs: minor and major pauses and 

concurrent, not stop-the-world GC events. In our case, we can see an obvious “winner”, a situation in which full 

GC events are contributing the most to both throughput and latency, by again confirming the fact that the 3,928 

full GC pauses took 634 seconds to complete. 

As seen from the example, GCViewer can quickly visualize symptoms that tell us whether or not the JVM is 

healthy in terms of misbehaving garbage collectors. As general guidelines, the following symptoms can quickly 

be revealed, visualizing the behavior of the GC: 

https://plumbr.eu/wp-content/uploads/2015/12/gviewer-screenshot-pause.png
https://plumbr.eu/wp-content/uploads/2015/12/gcviewer-screenshot-eventdetails.png
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 Low throughput. When the throughput of the application decreases and falls under a tolerable level, the total 

time that the application spends doing useful work gets reduced. What is “tolerable” depends on your 

application and its usage scenario. One rule of thumb says that any value below 90% should draw your 

attention and may require GC optimization. 

 Excessively long individual GC pauses. Whenever an individual pause starts taking too long, the latency of 

the application starts to suffer. When the latency requirements require the transactions in the application to 

complete under 1,000 ms, for example, you cannot tolerate any GC pauses taking more than 1,000 ms. 

 High heap consumption. Whenever the old generation remains close to being fully utilized even after several 

full GC cycles, you face a situation where the application is at its limits, either due to under-provisioning 

resources or due to a memory leak. This symptom always has a significant impact on throughput as well. 

As a general comment – visualizing GC logs is definitely something we recommend. Instead of directly working 

with lengthy and complex GC logs, you get access to humanly understandable visualization of the very same 

information. 

Profilers 
The next set of tools to introduce is profilers. As opposed to the tools introduced in previous sections, GC-related 

areas are a subset of the functionality that profilers offer. In this section we focus only on the GC-related 

functionality of profilers. 

The chapter starts with a warning – profilers as a tool category tend to be misunderstood and used in situations 

for which there are better alternatives. There are times when profilers truly shine, for example when detecting 

CPU hot spots in your application code. But for several other situations there are better alternatives. 

This also applies to garbage collection tuning. When it comes to detecting whether or not you are suffering from 

GC-induced latency or throughput issues, you do not really need a profiler. The tools mentioned in previous 

chapters (jstat or raw/visualized GC logs) are quicker and cheaper ways of detecting whether or not you have 

anything to worry about in the first place. Especially when gathering data from production deployments, profilers 

should not be your tool of choice due to the introduced performance overhead. 

But whenever you have verified you indeed need to optimize the impact GC has on your application, profilers 

do have an important role to play by exposing information about object creation. If you take a step back – GC 

pauses are triggered by objects not fitting into a particular memory pool. This can only happen when you create 

objects. And all profilers are capable of tracking object allocations via allocation profiling, giving you 

information about what actually resides in the memory along with the allocation traces. 

Allocation profiling gives you information about the places where your application creates the majority of the 

objects. Exposing the top memory consuming objects and the threads in your application that produce the largest 

number of objects is the benefit you should be after when using profilers for GC tuning. 

In the following sections we will see three different allocation profilers in action: hprof, JVisualVM and AProf. 

There are plenty more different profilers out there to choose from, both commercial and free solutions, but the 

functionality and benefits of each are similar to the ones discussed in the following sections. 

http://zeroturnaround.com/rebellabs/developer-productivity-report-2015-java-performance-survey-results/3/


Plumbr Java Garbage Collection Handbook 2015 58 

hprof 

Bundled with the JDK distribution is hprof profiler. As it is present in all environments, this is the first profiler to 

be considered when harvesting information. 

To run your application with hprof, you need to modify the startup scripts of the JVM similarly to the following 

example: 

java -agentlib:hprof=heap=sites com.yourcompany.YourApplication 

On application exit, it will dump the allocation information to a java.hprof.txt file to the working directory. Open 

the file with a text editor of your choice and search for the phrase “SITES BEGIN” giving you information similar 

to the following: 

SITES BEGIN (ordered by live bytes) Tue Dec  8 11:16:15 2015 

          percent          live          alloc'ed   stack  class 

 rank   self  accum     bytes objs     bytes  objs  trace  name 

    1  64.43% 4.43%   8370336 20121  27513408 66138 302116 int[] 

    2  3.26% 88.49%    482976 20124   1587696 66154 302104 java.util.ArrayList 

    3  1.76% 88.74%    241704 20121   1587312 66138 302115 eu.plumbr.demo.largeheap.ClonableClass0006 

    ... cut for brevity ... 

SITES END 

From the above, we can see the allocations ranked by the number of objects created per allocation. The first 

line shows that 64.43% of all objects were integer arrays (int[]) created at the site identified by the 

number 302116. Searching the file for “TRACE 302116” gives us the following information: 

TRACE 302116: 

 eu.plumbr.demo.largeheap.ClonableClass0006.<init>(GeneratorClass.java:11) 

 sun.reflect.GeneratedConstructorAccessor7.newInstance(<Unknown Source>:Unknown line) 

 sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) 

 java.lang.reflect.Constructor.newInstance(Constructor.java:422) 

 

Now, knowing that 64.43% of the objects were allocated as integer arrays in the ClonableClass0006 constructor, 

in the line 11, you can proceed with optimizing the code to reduce the burden on GC. 

Java VisualVM 

JVisualVM makes a second appearance in this chapter. In the first section we ruled JVisualVM out from the list 

of tools monitoring your JVM for GC behavior, but in this section we will demonstrate its strengths in allocation 

profiling. 

Attaching JVisualVM to your JVM is done via GUI where you can attach the profiler to a running JVM. After 

attaching the profiler: 

1. Open the “Profiler” tab and make sure that under the “Settings” checkbox you have enabled “Record 

allocations stack traces”. 

2. Click the “Memory” button to start memory profiling. 

3. Let your application run for some time to gather enough information about object allocations. 

4. Click the “Snapshot” button. This will give you a snapshot of the profiling information gathered. 

After completing the steps above, you are exposed to information similar to the following: 

http://docs.oracle.com/javase/8/docs/technotes/samples/hprof.html
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From the above, we can see the allocations ranked by the number of objects created per class. In the very first 

line we can see that the vast majority of all objects allocated were int[] arrays. By right-clicking the row you can 

access all stack traces where those objects were allocated: 

 

Compared to hprof, JVisualVM makes the information a bit easier to process – for example in the screenshot 

above you can see that all allocation traces for the int[] are exposed in single view, so you can escape the 

potentially repetitive process of matching different allocation traces. 

https://plumbr.eu/wp-content/uploads/2015/12/jvisualvm-top-objects.png
https://plumbr.eu/wp-content/uploads/2015/12/jvisualvm-allocation-traces.png
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AProf 

Last, but not least, is AProf by Devexperts. AProf is a memory allocation profiler packaged as a Java agent. 

To run your application with AProf, you need to modify the startup scripts of the JVM similarly to the following 

example: 

java -javaagent:/path-to/aprof.jar com.yourcompany.YourApplication 

 

Now, after restarting the application, an aprof.txt file will be created to the working directory. The file is updated 

once every minute and contains information similar to the following: 

================================================================================================================ 

TOTAL allocation dump for 91,289 ms (0h01m31s) 

Allocated 1,769,670,584 bytes in 24,868,088 objects of 425 classes in 2,127 locations 

================================================================================================================ 

 

Top allocation-inducing locations with the data types allocated from them 

---------------------------------------------------------------------------------------------------------------- 

eu.plumbr.demo.largeheap.ManyTargetsGarbageProducer.newRandomClassObject: 1,423,675,776 (80.44%) bytes in 

17,113,721 (68.81%) objects (avg size 83 bytes) 

 int[]: 711,322,976 (40.19%) bytes in 1,709,911 (6.87%) objects (avg size 416 bytes) 

 char[]: 369,550,816 (20.88%) bytes in 5,132,759 (20.63%) objects (avg size 72 bytes) 

 java.lang.reflect.Constructor: 136,800,000 (7.73%) bytes in 1,710,000 (6.87%) objects (avg size 80 bytes) 

 java.lang.Object[]: 41,079,872 (2.32%) bytes in 1,710,712 (6.87%) objects (avg size 24 bytes) 

 java.lang.String: 41,063,496 (2.32%) bytes in 1,710,979 (6.88%) objects (avg size 24 bytes) 

 java.util.ArrayList: 41,050,680 (2.31%) bytes in 1,710,445 (6.87%) objects (avg size 24 bytes) 

          ... cut for brevity ...  

In the output above allocations are ordered by size. From the above you can see right away that 80.44% of the 

bytes and 68.81% of the objects were allocated in the 

ManyTargetsGarbageProducer.newRandomClassObject() method. Out of these, int[] arrays took the most 

space with 40.19% of total memory consumption. 

Scrolling further down the file, you will discover a block with allocation traces, also ordered by allocation sizes: 

 

Top allocated data types with reverse location traces 

-------------------------------------------------------------------------------------------------------- 

int[]: 725,306,304 (40.98%) bytes in 1,954,234 (7.85%) objects (avg size 371 bytes) 

 eu.plumbr.demo.largeheap.ClonableClass0006.: 38,357,696 (2.16%) bytes in 92,206 (0.37%) objects (avg 

size 416 bytes) 

  java.lang.reflect.Constructor.newInstance: 38,357,696 (2.16%) bytes in 92,206 (0.37%) objects (avg 

size 416 bytes) 

   eu.plumbr.demo.largeheap.ManyTargetsGarbageProducer.newRandomClassObject: 38,357,280 (2.16%) 

bytes in 92,205 (0.37%) objects (avg size 416 bytes) 

   java.lang.reflect.Constructor.newInstance: 416 (0.00%) bytes in 1 (0.00%) objects (avg size 

416 bytes) 

... cut for brevity ...  

 

https://code.devexperts.com/display/AProf/About+Aprof
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From the above we can see the allocations for int[] arrays, again zooming in to the 

ClonableClass0006 constructor where these arrays were created. 

So, like other solutions, AProf exposed information about allocation size and locations, making it possible to 

zoom in to the most memory-hungry parts of your application. However, in our opinion AProf is the most useful 

allocation profiler, as it focuses on just one thing and does it extremely well. In addition, this open-source tool is 

free and has the least overhead compared to alternatives. 
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GC Tuning: In Practice 
This chapter covers several typical performance problems that one may encounter with garbage collection. The 

examples given here are derived from real applications, but are simplified for the sake of clarity. 

High Allocation Rate 
Allocation rate is a term used when communicating the amount of memory allocated per time unit. Often it is 

expressed in MB/sec, but you can use PB/year if you feel like it. So that is all there is – no magic, just the amount 

of memory you allocate in your Java code measured over a period of time. 

An excessively high allocation rate can mean trouble for your application’s performance. When running on a 

JVM, the problem will be revealed by garbage collection posing a large overhead. 

How to Measure Allocation Rate? 

One way to measure the allocation rate is to turn on GC logging by specifying -XX:+PrintGCDetails -

XX:+PrintGCTimeStamps flags for the JVM. The JVM now starts logging the GC pauses similar to the following: 

0.291: [GC (Allocation Failure) [PSYoungGen: 33280K->5088K(38400K)] 33280K-

>24360K(125952K), 0.0365286 secs] [Times: user=0.11 sys=0.02, real=0.04 secs]  

0.446: [GC (Allocation Failure) [PSYoungGen: 38368K->5120K(71680K)] 57640K-

>46240K(159232K), 0.0456796 secs] [Times: user=0.15 sys=0.02, real=0.04 secs]  

0.829: [GC (Allocation Failure) [PSYoungGen: 71680K->5120K(71680K)] 112800K-

>81912K(159232K), 0.0861795 secs] [Times: user=0.23 sys=0.03, real=0.09 secs] 

 

From the GC log above, we can calculate the allocation rate as the difference between the sizes of the 

young generation after the completion of the last collection and before the start of the next one. Using 

the example above, we can extract the following information: 

 At 291 ms after the JVM was launched, 33,280 K of objects were created. The first minor GC event cleaned 

the young generation, after which there were 5,088 K of objects in the young generation left. 

 At 446 ms after launch, the young generation occupancy had grown to 38,368 K, triggering the next GC, 

which managed to reduce the young generation occupancy to 5,120 K. 

 At 829 ms after the launch, the size of the young generation was 71,680 K and the GC reduced it again 

to 5,120 K. 

This data can then be expressed in the following table calculating the allocation rate as deltas of the young 

occupancy: 

Event Time Young before Young after Allocated during Allocation rate 

1st GC 291ms 33,280KB 5,088KB 33,280KB 114MB/sec 

2nd GC 446ms 38,368KB 5,120KB 33,280KB 215MB/sec 

3rd GC 829ms 71,680KB 5,120KB 66,560KB 174MB/sec 

Total 829ms N/A N/A 133,120KB 161MB/sec 

 



Plumbr Java Garbage Collection Handbook 2015 63 

Having this information allows us to say that this particular piece of software had the allocation rate of 161 

MB/sec during the period of measurement. 

Why Should I Care? 

After measuring the allocation rate we can understand how the changes in allocation rate affect application 

throughput by increasing or reducing the frequency of GC pauses. First and foremost, you should notice that 

only minor GC pauses cleaning the young generation are affected. Neither the frequency nor duration of the GC 

pauses cleaning the old generation are directly impacted by the allocation rate, but instead by the promotion 

rate, a term that we will cover separately in the next section. 

Knowing that we can focus only on Minor GC pauses, we should next look into the different memory pools inside 

the young generation. As the allocation takes place in Eden, we can immediately look into how sizing Eden can 

impact the allocation rate. So we can hypothesize that increasing the size of Eden will reduce the frequency of 

minor GC pauses and thus allow the application to sustain faster allocation rates. 

And indeed, when running the same application with different Eden sizes using -XX:NewSize -XX:MaxNewSize 

& -XX:SurvivorRatio parameters, we can see a two-fold difference in allocation rates. 

 Re-running with 100 M of Eden reduces the allocation rate to below 100 MB/sec. 

 Increasing Eden size to 1 GB increases the allocation rate to just below 200 MB/sec. 

If you are still wondering how this can be true – if you stop your application threads for GC less frequently 

you can do more useful work. More useful work also happens to create more objects, thus supporting 

the increased allocation rate. 

Now, before you jump to the conclusion that “bigger Eden is better”, you should notice that the allocation rate 

might and probably does not directly correlate with the actual throughput of your application. It is a technical 

measurement contributing to throughput. The allocation rate can and will have an impact on how frequently your 

minor GC pauses stop application threads, but to see the overall impact, you also need to take into account 

major GC pauses and measure throughput not in MB/sec but in the business operations your application 

provides. 

Give me an Example 

Meet the demo application. Suppose that it works with an external sensor that provides a number. The 

application continuously updates the value of the sensor in a dedicated thread (to a random value, in this 

example), and from other threads sometimes uses the most recent value to do something meaningful with it in 

the processSensorValue() method: 

public class BoxingFailure { 

  private static volatile Double sensorValue; 

 

  private static void readSensor() { 

    while(true) sensorValue = Math.random(); 

  } 

 
  

https://plumbr.eu/handbook/garbage-collection-in-java#minor-gc
https://plumbr.eu/handbook/garbage-collection-in-java#minor-gc
https://plumbr.eu/handbook/garbage-collection-in-java#eden
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/Boxing.java
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  private static void processSensorValue(Double value) { 

    if(value != null) { 

      //... 

    } 

  } 

} 

 

As the name of the class suggests, the problem here is boxing. Possibly to accommodate the null check, the 

author made the sensorValue field a capital-D Double. This example is quite a common pattern of dealing with 

calculations based on the most recent value, when obtaining this value is an expensive operation. And in the 

real world, it is usually much more expensive than just getting a random value. Thus, one thread continuously 

generates new values, and the calculating thread uses them, avoiding the expensive retrieval. 

The demo application is impacted by the GC not keeping up with the allocation rate. The ways to verify and 

solve the issue are given in the next sections. 

Could my JVMs be Affected? 

First and foremost, you should only be worried if the throughput of your application starts to decrease. As the 

application is creating too much objects that are almost immediately discarded, the frequency of minor GC 

pauses surges. Under enough of a load this can result in GC having a significant impact on throughput. 

When you run into a situation like this, you would be facing a log file similar to the following short snippet 

extracted from the GC logs of the demo application introduced in the previous section. The application was 

launched as with the -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Xmx32mcommand line arguments: 

 

2.808: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003076 secs] 

2.819: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003079 secs] 

2.830: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0002968 secs] 

2.842: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003374 secs] 

2.853: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0004672 secs] 

2.864: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003371 secs] 

2.875: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003214 secs] 

2.886: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003374 secs] 

2.896: [GC (Allocation Failure) [PSYoungGen: 9760K->32K(10240K)], 0.0003588 secs] 

 

What should immediately grab your attention is the frequency of minor GC events. This indicates that there 

are lots and lots of objects being allocated. Additionally, the post-GC occupancy of the young generation 

remains low, and no full collections are happening. These symptoms indicate that the GC is having 

significant impact to the throughput of the application at hand. 

https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/Boxing.java
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What is the Solution? 

In some cases, reducing the impact of high allocation rates can be as easy as increasing the size of the young 

generation. Doing so will not reduce the allocation rate itself, but will result in less frequent collections. The 

benefit of the approach kicks in when there will be only a few survivors every time. As the duration of a minor 

GC pause is impacted by the number of surviving objects, they will not noticeably increase here. 

The result is visible when we run the very same demo application with increased heap size and, with it, the 

young generation size, by using the -Xmx64m parameter: 

2.808: [GC (Allocation Failure) [PSYoungGen: 20512K->32K(20992K)], 0.0003748 secs] 

2.831: [GC (Allocation Failure) [PSYoungGen: 20512K->32K(20992K)], 0.0004538 secs] 

2.855: [GC (Allocation Failure) [PSYoungGen: 20512K->32K(20992K)], 0.0003355 secs] 

2.879: [GC (Allocation Failure) [PSYoungGen: 20512K->32K(20992K)], 0.0005592 secs] 

 

However, just throwing more memory at it is not always a viable solution. Equipped with the knowledge on 

allocation profilers from the previous chapter, we may find out where most of the garbage is produced. 

Specifically, in this case, 99% are Doubles that are created with the readSensor method. As a simple 

optimization, the object can be replaced with a primitive double, and the null can be replaced with Double.NaN. 

Since primitive values are not actually objects, no garbage is produced, and there is nothing to collect. Instead 

of allocating a new object on the heap, a field in an existing object is directly overwritten. 

The simple change will, in the demo application, almost completely remove GC pauses. In some cases, the JVM 

may be clever enough to remove excessive allocations itself by using the escape analysis technique. To cut a 

long story short, the JIT compiler may in some cases prove that a created object never “escapes” the scope it 

is created in. In such cases, there is no actual need to allocate it on the heap and produce garbage this way, so 

the JIT compiler does just that: it eliminates the allocation. See this benchmark for an example. 

Premature Promotion 
Before explaining the concept of premature promotion, we should familiarize ourselves with the concept it builds 

upon – the promotion rate. The promotion rate is measured in the amount of data propagated from the young 

generation to the old generation per time unit. It is often measured in MB/sec, similarly to the allocation rate. 

Promoting long-lived objects from the young generation to the old is how JVM is expected to behave. Recalling 

the generation hypothesis we can now construct a situation where not only long-lived objects end up in the old 

generation. Such a situation, where objects with a short life expectancy are not collected in the young generation 

and get promoted to the old generation, is called premature promotion. 

Cleaning these short-lived objects now becomes a job for major GC, which is not designed for frequent runs 

and results in longer GC pauses. This significantly affects the throughput of the application. 

How to Measure Promotion Rate 

One of the ways you can measure the promotion rate is to turn on GC logging by specifying -

XX:+PrintGCDetails -XX:+PrintGCTimeStamps flags for the JVM. The JVM now starts logging the GC pauses 

just like in the following snippet: 

https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/Boxing.java
https://docs.oracle.com/javase/7/docs/api/java/lang/Double.html#NaN
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/FixedBoxing.java
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/jit/EscapeAnalysis.java
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0.291: [GC (Allocation Failure) [PSYoungGen: 33280K->5088K(38400K)] 33280K-

>24360K(125952K), 0.0365286 secs] [Times: user=0.11 sys=0.02, real=0.04 secs]  

0.446: [GC (Allocation Failure) [PSYoungGen: 38368K->5120K(71680K)] 57640K-

>46240K(159232K), 0.0456796 secs] [Times: user=0.15 sys=0.02, real=0.04 secs]  

0.829: [GC (Allocation Failure) [PSYoungGen: 71680K->5120K(71680K)] 112800K-

>81912K(159232K), 0.0861795 secs] [Times: user=0.23 sys=0.03, real=0.09 secs] 

From the above we can extract the size of the young Generation and the total heap both before and after the 

collection event. Knowing the consumption of the young generation and the total heap, it is easy to calculate the 

consumption of the old generation as just the delta between the two. Expressing the information in GC logs as: 

Event Time Young decreased Total decreased Promoted Promotion rate 

1st GC 291ms 28,192K 8,920K 19,272K 66.2 MB/sec 

2nd GC 446ms 33,248K 11,400K 21,848K 140.95 MB/sec 

3rd GC 829ms 66,560K 30,888K 35,672K 93.14 MB/sec 

Total 829ms   76,792K 92.63 MB/sec 

will allow us to extract the promotion rate for the measured period. We can see that on average the promotion 

rate was 92 MB/sec, peaking at 140.95 MB/sec for a while. 

Notice that you can extract this information only from minor GC pauses. Full GC pauses do not expose the 

promotion rate as the change in the old generation usage in GC logs also includes objects cleaned by the major 

GC. 

Why Should I Care? 

Similarly to the allocation rate, the main impact of the promotion rate is the change of frequency in GC pauses. 

But as opposed to the allocation rate that affects the frequency of minor GC events, the promotion rate affects 

the frequency of major GC events. Let me explain – the more stuff you promote to the old generation the faster 

you will fill it up. Filling the old generation faster means that the frequency of the GC events cleaning the old 

generation will increase. 

 

As we have shown in earlier chapters, full garbage collections typically require much more time, as they have 

to interact with many more objects, and perform additional complex activities such as defragmentation. 

https://plumbr.eu/handbook/garbage-collection-in-java#minor-gc-major-gc-full-gc
https://plumbr.eu/handbook/garbage-collection-in-java#minor-gc-major-gc-full-gc
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Give me an Example 

Let us look at a demo application suffering from premature promotion. This app obtains chunks of data, 

accumulates them, and, when a sufficient number is reached, processes the whole batch at once: 

public class PrematurePromotion { 

 

   private static final Collection<byte[]> accumulatedChunks = new ArrayList<>(); 

 

   private static void onNewChunk(byte[] bytes) { 

       accumulatedChunks.add(bytes); 

 

       if(accumulatedChunks.size() > MAX_CHUNKS) { 

           processBatch(accumulatedChunks); 

           accumulatedChunks.clear(); 

       } 

   } 

} 

 

The demo application is impacted by premature promotion by the GC. The ways to verify and solve the issue 

are given in the next sections. 

Could my JVMs be Affected? 

In general, the symptoms of premature promotion can take any of the following forms: 

 The application goes through frequent full GC runs over a short period of time. 

 The old generation consumption after each full GC is low, often under 10-20% of the total size of the old 

generation. 

 Facing the promotion rate approaching the allocation rate. 

 

Showcasing this in a short and easy-to-understand demo application is a bit tricky, so we will cheat a little by 

making the objects tenure to the old generation a bit earlier than it happens by default. If we ran the demo with 

a specific set of GC parameters (-Xmx24m -XX:NewSize=16m -XX:MaxTenuringThreshold=1), we would see 

this in the garbage collection logs: 

2.176: [Full GC (Ergonomics) [PSYoungGen: 9216K->0K(10752K)] [ParOldGen: 10020K-

>9042K(12288K)] 19236K->9042K(23040K), 0.0036840 secs] 

2.394: [Full GC (Ergonomics) [PSYoungGen: 9216K->0K(10752K)] [ParOldGen: 9042K-

>8064K(12288K)] 18258K->8064K(23040K), 0.0032855 secs] 

2.611: [Full GC (Ergonomics) [PSYoungGen: 9216K->0K(10752K)] [ParOldGen: 8064K-

>7085K(12288K)] 17280K->7085K(23040K), 0.0031675 secs] 

2.817: [Full GC (Ergonomics) [PSYoungGen: 9216K->0K(10752K)] [ParOldGen: 7085K-

>6107K(12288K)] 16301K->6107K(23040K), 0.0030652 secs] 

At first glance it may seem that premature promotion is not the issue here. Indeed, the occupancy of the old 

generation seems to be decreasing on each cycle. However, if few or no objects were promoted, we would not 

be seeing a lot of full garbage collections. 

https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/PrematurePromotion.java
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/PrematurePromotion.java
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/PrematurePromotion.java
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There is a simple explanation for this GC behavior: while many objects are being promoted to the old generation, 

some existing objects are collected. This gives the impression that the old generation usage is decreasing, while 

in fact, there are objects that are constantly being promoted, triggering full GC. 

What is the Solution? 

In a nutshell, to fix this problem, we would need to make the buffered data fit into the young generation. There 

are two simple approaches for doing this. The first is to increase the young generation size by using -Xmx64m 

-XX:NewSize=32m parameters at JVM startup. Running the application with this change in configuration will 

make Full GC events much less frequent, while barely affecting the duration of minor collections: 

2.251: [GC (Allocation Failure) [PSYoungGen: 28672K->3872K(28672K)] 37126K-

>12358K(61440K), 0.0008543 secs] 

2.776: [GC (Allocation Failure) [PSYoungGen: 28448K->4096K(28672K)] 36934K-

>16974K(61440K), 0.0033022 secs] 

Another approach in this case would be to simply decrease the batch size, which would also give a similar result. 

Picking the right solution heavily depends on what is really happening in the application. In some cases, business 

logic does not permit decreasing batch size. In this case, increasing available memory or redistributing in favor 

of the young generation might be possible. 

If neither is a viable option, then perhaps data structures can be optimized to consume less memory. But the 

general goal in this case remains the same: make transient data fit into the young generation. 

Weak, Soft and Phantom References 
Another class of issues affecting GC is linked to the use of non-strong references in the application. While this 

may help to avoid an unwanted OutOfMemoryError in many cases, heavy usage of such references may 

significantly impact the way garbage collection affects the performance of your application. 

Why Should I Care? 

When using weak references, you should be aware of the way the weak references are garbage-collected. 

Whenever GC discovers that an object is weakly reachable, that is, the last remaining reference to the object is 

a weak reference, it is put onto the corresponding ReferenceQueue, and becomes eligible for finalization. One 

may then poll this reference queue and perform the associated cleanup activities. A typical example for such 

cleanup would be the removal of the now missing key from the cache. 

The trick here is that at this point you can still create new strong references to the object, so before it can be, at 

last, finalized and reclaimed, GC has to check again that it really is okay to do this. Thus, the weakly referenced 

objects are not reclaimed for an extra GC cycle. 

Weak references are actually a lot more common than you might think. Many caching solutions build the 

implementations using weak referencing, so even if you are not directly creating any in your code, there is a 

strong chance your application is still using weakly referenced objects in large quantities. 

When using soft references, you should bear in mind that soft references are collected much less eagerly than 

the weak ones. The exact point at which it happens is not specified and depends on the implementation of the 

https://plumbr.eu/outofmemory
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JVM. Typically the collection of soft references happens only as a last ditch effort before running out of memory. 

What it implies is that you might find yourself in situations where you face either more frequent or longer full GC 

pauses than expected, since there are more objects resting in the old generation. 

When using phantom references, you have to literally do manual memory management in regards of flagging 

such references eligible for garbage collection. It is dangerous, as a superficial glance at the javadoc may lead 

one to believe they are the completely safe to use: 

In order to ensure that a reclaimable object remains so, the referent of a phantom reference may not be retrieved: 

The get method of a phantom reference always returns null. 

 

Surprisingly, many developers skip the very next paragraph in the same javadoc (emphasis added): 

Unlike soft and weak references, phantom references are not automatically cleared by the garbage collector 

as they are enqueued. An object that is reachable via phantom references will remain so until all such references 

are cleared or themselves become unreachable. 

 

That is right, we have to manually clear() up phantom references or risk facing a situation where the JVM starts 

dying with an OutOfMemoryError. The reason why the Phantom references are there in the first place is that 

this is the only way to find out when an object has actually become unreachable via the usual means. Unlike 

with soft or weak references, you cannot resurrect a phantom-reachable object. 

Give me an Example 

Let us take a look at another demo application that allocates a lot of objects, which are successfully reclaimed 

during minor garbage collections. Bearing in mind the trick of altering the tenuring threshold from the previous 

section on promotion rate, we could run this application with -Xmx24m 

.-XX:NewSize=16m -XX:MaxTenuringThreshold=1 and see this in the GC logs: 

2.330: [GC (Allocation Failure)  20933K->8229K(22528K), 0.0033848 secs] 

2.335: [GC (Allocation Failure)  20517K->7813K(22528K), 0.0022426 secs] 

2.339: [GC (Allocation Failure)  20101K->7429K(22528K), 0.0010920 secs] 

2.341: [GC (Allocation Failure)  19717K->9157K(22528K), 0.0056285 secs] 

2.348: [GC (Allocation Failure)  21445K->8997K(22528K), 0.0041313 secs] 

2.354: [GC (Allocation Failure)  21285K->8581K(22528K), 0.0033737 secs] 

2.359: [GC (Allocation Failure)  20869K->8197K(22528K), 0.0023407 secs] 

2.362: [GC (Allocation Failure)  20485K->7845K(22528K), 0.0011553 secs] 

2.365: [GC (Allocation Failure)  20133K->9501K(22528K), 0.0060705 secs] 

2.371: [Full GC (Ergonomics)  9501K->2987K(22528K), 0.0171452 secs] 

 

Full collections are quite rare in this case. However, if the application also starts creating weak references 

(-Dweak.refs=true) to these created objects, the situation may change drastically. There may be many reasons 

to do this, starting from using the object as keys in a weak hash map and ending with allocation profiling. In any 

case, making use of weak references here may lead to this: 

http://docs.oracle.com/javase/7/docs/api/java/lang/ref/Reference.html#clear()
https://plumbr.eu/outofmemory
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/WeakReferences.java
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2.059: [Full GC (Ergonomics)  20365K->19611K(22528K), 0.0654090 secs] 

2.125: [Full GC (Ergonomics)  20365K->19711K(22528K), 0.0707499 secs] 

2.196: [Full GC (Ergonomics)  20365K->19798K(22528K), 0.0717052 secs] 

2.268: [Full GC (Ergonomics)  20365K->19873K(22528K), 0.0686290 secs] 

2.337: [Full GC (Ergonomics)  20365K->19939K(22528K), 0.0702009 secs] 

2.407: [Full GC (Ergonomics)  20365K->19995K(22528K), 0.0694095 secs] 

 

As we can see, there are now many full collections, and the duration of the collections is an order of magnitude 

longer! Another case of premature promotion, but this time a tad trickier. The root cause, of course, lies with the 

weak references. Before we added them, the objects created by the application were dying just before being 

promoted to the old generation. But with the addition, they are now sticking around for an extra GC round so 

that the appropriate cleanup can be done on them. Like before, a simple solution would be to increase the size 

of the young generation by specifying -Xmx64m -XX:NewSize=32m: 

2.328: [GC (Allocation Failure)  38940K->13596K(61440K), 0.0012818 secs] 

2.332: [GC (Allocation Failure)  38172K->14812K(61440K), 0.0060333 secs] 

2.341: [GC (Allocation Failure)  39388K->13948K(61440K), 0.0029427 secs] 

2.347: [GC (Allocation Failure)  38524K->15228K(61440K), 0.0101199 secs] 

2.361: [GC (Allocation Failure)  39804K->14428K(61440K), 0.0040940 secs] 

2.368: [GC (Allocation Failure)  39004K->13532K(61440K), 0.0012451 secs] 

The objects are now once again reclaimed during minor garbage collection. 

The situation is even worse when soft references are used as seen in the next demo application. The softly-

reachable objects are not reclaimed until the application risks getting an OutOfMemoryError. Replacing weak 

references with soft references in the demo application immediately surfaces many more Full GC events: 

2.162: [Full GC (Ergonomics)  31561K->12865K(61440K), 0.0181392 secs] 

2.184: [GC (Allocation Failure)  37441K->17585K(61440K), 0.0024479 secs] 

2.189: [GC (Allocation Failure)  42161K->27033K(61440K), 0.0061485 secs] 

2.195: [Full GC (Ergonomics)  27033K->14385K(61440K), 0.0228773 secs] 

2.221: [GC (Allocation Failure)  38961K->20633K(61440K), 0.0030729 secs] 

2.227: [GC (Allocation Failure)  45209K->31609K(61440K), 0.0069772 secs] 

2.234: [Full GC (Ergonomics)  31609K->15905K(61440K), 0.0257689 secs] 

And the king here is the phantom reference as seen in the third demo application. Running the demo with the 

same sets of parameters as before would give us results that are pretty similar as the results in the case with 

weak references. The number of full GC pauses would, in fact, be much smaller because of the difference in the 

finalization described in the beginning of this section. 

https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/SoftReferences.java
https://github.com/gvsmirnov/java-perv/blob/master/labs-8/src/main/java/ru/gvsmirnov/perv/labs/gc/PhantomReferences.java


Plumbr Java Garbage Collection Handbook 2015 71 

However, adding one flag that disables phantom reference clearing (-Dno.ref.clearing=true) would quickly give 

us this: 

4.180: [Full GC (Ergonomics)  57343K->57087K(61440K), 0.0879851 secs] 

4.269: [Full GC (Ergonomics)  57089K->57088K(61440K), 0.0973912 secs] 

4.366: [Full GC (Ergonomics)  57091K->57089K(61440K), 0.0948099 secs] 

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space 

One must exercise extreme caution when using phantom references and always clear up the phantom reachable 

objects in a timely manner. Failing to do so will likely end up with an OutOfMemoryError. And trust us when we 

say that it is quite easy to fail at this: one unexpected exception in the thread that processes the reference 

queue, and you will have a dead application at your hand. 

Could my JVMs be affected? 

As a general recommendation, consider enabling the -XX:+PrintReferenceGC JVM option to see the impact that 

different references have on garbage collection. If we add this to the application from the WeakReference 

example, we will see this: 

2.173: [Full GC (Ergonomics) 2.234: [SoftReference, 0 refs, 0.0000151 secs]2.234: 

[WeakReference, 2648 refs, 0.0001714 secs]2.234: [FinalReference, 1 refs, 0.0000037 

secs]2.234: [PhantomReference, 0 refs, 0 refs, 0.0000039 secs]2.234: [JNI Weak Reference, 

0.0000027 secs][PSYoungGen: 9216K->8676K(10752K)] [ParOldGen: 12115K->12115K(12288K)] 

21331K->20792K(23040K), [Metaspace: 3725K->3725K(1056768K)], 0.0766685 secs] [Times: 

user=0.49 sys=0.01, real=0.08 secs]  

2.250: [Full GC (Ergonomics) 2.307: [SoftReference, 0 refs, 0.0000173 secs]2.307: 

[WeakReference, 2298 refs, 0.0001535 secs]2.307: [FinalReference, 3 refs, 0.0000043 

secs]2.307: [PhantomReference, 0 refs, 0 refs, 0.0000042 secs]2.307: [JNI Weak Reference, 

0.0000029 secs][PSYoungGen: 9215K->8747K(10752K)] [ParOldGen: 12115K->12115K(12288K)] 

21331K->20863K(23040K), [Metaspace: 3725K->3725K(1056768K)], 0.0734832 secs] [Times: 

user=0.52 sys=0.01, real=0.07 secs]  

2.323: [Full GC (Ergonomics) 2.383: [SoftReference, 0 refs, 0.0000161 secs]2.383: 

[WeakReference, 1981 refs, 0.0001292 secs]2.383: [FinalReference, 16 refs, 0.0000049 

secs]2.383: [PhantomReference, 0 refs, 0 refs, 0.0000040 secs]2.383: [JNI Weak Reference, 

0.0000027 secs][PSYoungGen: 9216K->8809K(10752K)] [ParOldGen: 12115K->12115K(12288K)] 

21331K->20925K(23040K), [Metaspace: 3725K->3725K(1056768K)], 0.0738414 secs] [Times: 

user=0.52 sys=0.01, real=0.08 secs] 

As always, this information should only be analyzed when you have identified that GC is having impact to either 

the throughput or latency of your application. In such case you may want to check these sections of the logs. 

Normally, the number of references cleared during each GC cycle is quite low, in many cases exactly zero. If 

this is not the case, however, and the application is spending a significant period of time clearing references, or 

just a lot of them are being cleared, then further investigation is required. 
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What is the Solution? 

When you have verified the application actually is suffering from the mis-, ab- or overuse of either weak, soft or 

phantom references, the solution often involves changing the application’s intrinsic logic. This is very application 

specific and generic guidelines are thus hard to offer. However, some generic solutions to bear in mind are: 

 Weak references – if the problem is triggered by increased consumption of a specific memory pool, an 

increase in the corresponding pool (and possibly the total heap along with it) can help you out. As seen in 

the example section, increasing the total heap and young generation sizes alleviated the pain. 

 Phantom references – make sure you are actually clearing the references. It is easy to dismiss certain corner 

cases and have the clearing thread to not being able to keep up with the pace the queue is filled or to stop 

clearing the queue altogether, putting a lot of pressure to GC and creating a risk of ending up with 

an OutOfMemoryError. 

 Soft references – when soft references are identified as the source of the problem, the only real way to 

alleviate the pressure is to change the application’s intrinsic logic. 

Other Examples 
Previous chapters covered the most common problems related to poorly behaving GC. Unfortunately, there is a 

long list of more specific cases, where you cannot apply the knowledge from previous chapters. This section 

describes a few of the more unusual problems that you may face. 

RMI & GC 

When your application is publishing or consuming services over RMI, the JVM periodically launches full GC to 

make sure that locally unused objects are also not taking up space on the other end. Bear in mind that even if 

you are not explicitly publishing anything over RMI in your code, third party libraries or utilities can still open RMI 

endpoints. One such common culprit is for example JMX, which, if attached to remotely, will use RMI underneath 

to publish the data. 

The problem is exposed by seemingly unnecessary and periodic full GC pauses. When you check the old 

generation consumption, there is often no pressure to the memory as there is plenty of free space in the old 

generation, but full GC is triggered, stopping the application threads. 

This behavior of removing remote references via System.gc() is triggered by the 

sun.rmi.transport.ObjectTable class requesting garbage collection to be run periodically as specified in 

the sun.misc.GC.requestLatency() method. 

For many applications, this is not necessary or outright harmful. To disable such periodic GC runs, you can set 

up the following for your JVM startup scripts: 

java -Dsun.rmi.dgc.server.gcInterval=9223372036854775807L -Dsun.rmi.dgc.client.gcInterva

l=9223372036854775807L com.yourcompany.YourApplication 

This sets the period after which System.gc() is run to Long.MAX_VALUE; for all practical matters, this equals 

eternity. 

An alternative solution for the problem would to disable explicit calls to System.gc() by specifying -

XX:+DisableExplicitGC in the JVM startup parameters. We do not however recommend this solution as it can 

have other side effects. 

https://plumbr.eu/outofmemory
http://www.oracle.com/technetwork/articles/javaee/index-jsp-136424.html
http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/api/java/lang/System.html#gc()
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JVMTI tagging & GC 

Whenever the application is run alongside with a Java Agent (-javaagent), there is a chance that the agent can 

tag the objects in the heap using JVMTI tagging. Agents can use tagging for various reasons that are not in the 

scope of this handbook, but there is a GC-related performance issue that can start affecting the latency and 

throughput of your application if tagging is applied to a large subset of objects inside the heap. 

The problem is hidden in the native code where JvmtiTagMap::do_weak_oops iterates over all the tags during 

each garbage collection event and performs a number of not-so-cheap operations for all of them. To make things 

worse, this operation is performed sequentially and is not parallelized. 

With a large number of tags, this implies that a large part of the GC process is now carried out in a single thread 

and all the benefits of parallelism disappear, potentially increasing the duration of GC pauses by an order of 

magnitude. 

To check whether or not a particular agent can be the reason for extended GC pauses, you would need to turn 

on the diagnostic option of –XX:+TraceJVMTIObjectTagging. Enabling the trace will allow you to get an estimate 

of how much native memory the tag map consumes and how much time the heap walks take. 

If you are not the author of the agent, fixing the problem is often out of your reach. Apart from contacting the 

vendor of a particular agent you cannot do much. In case you do end up in a situation like this, recommend that 

the vendor clean up the tags that are no longer needed. 

Humongous Allocations 

Whenever your application is using the G1 garbage collection algorithm, a phenomenon called humongous 

allocations can impact your application performance in regards of GC. To recap, humongous allocations are 

allocations that are larger than 50% of the region size in G1. 

Having frequent humongous allocations can trigger GC performance issues, considering the way that G1 

handles such allocations: 

 If the regions contain humongous objects, space between the last humongous object in the region and the 

end of the region will be unused. If all the humongous objects are just a bit larger than a factor of the region 

size, this unused space can cause the heap to become fragmented. 

 Collection of the humongous objects is not as optimized by the G1 as with regular objects. It was especially 

troublesome with early Java 8 releases – until Java 1.8u40 the reclamation of humongous regions was only 

done during full GC events. More recent releases of the Hotspot JVM free the humongous regions at the end 

of the marking cycle during the cleanup phase, so the impact of the issue has been reduced significantly for 

newer JVMs. 

To check whether or not your application is allocating objects in humongous regions, the first step would be to 

turn on GC logs similar to the following: 

java -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintReferenceGC -XX:+UseG1GC -XX:+

PrintAdaptiveSizePolicy -Xmx128m MyClass 

Now, when you check the logs and discover sections like these: 

http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html#Heap
https://bugs.openjdk.java.net/browse/JDK-8027959
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 0.106: [G1Ergonomics (Concurrent Cycles) request concurrent cycle initiation, reason: 

occupancy higher than threshold, occupancy: 60817408 bytes, allocation request: 1048592 

bytes, threshold: 60397965 bytes (45.00 %), source: concurrent humongous allocation] 

 0.106: [G1Ergonomics (Concurrent Cycles) request concurrent cycle initiation, reason: 

requested by GC cause, GC cause: G1 Humongous Allocation] 

 0.106: [G1Ergonomics (Concurrent Cycles) initiate concurrent cycle, reason: concurrent 

cycle initiation requested] 

 0.106: [GC pause (G1 Humongous Allocation) (young) (initial-mark) 0.106: [G1Ergonomics 

(CSet Construction) start choosing CSet, _pending_cards: 0, predicted base time: 10.00 ms, 

remaining time: 190.00 ms, target pause time: 200.00 ms] 

you have evidence that the application is indeed allocating humongous objects. The evidence is visible in the 

cause for a GC pause being identified as G1 Humongous Allocation and in the “allocation request: 12582928 

bytes” section, where we can see that the application is trying to allocate an object with the size of 1,048,592 

bytes, which is 16 bytes larger than the 50% of the 2 MB size of the humongous region specified for the JVM. 

The first solution for humongous allocation is to change the region size so that (most) of the allocations would 

not exceed the 50% limit triggering allocations in the humongous regions. The region size is calculated by the 

JVM during startup based on the size of the heap. You can override the size by 

specifying -XX:G1HeapRegionSize=XX in the startup script. The specified region size must be between 1 and 

32 megabytes and has to be a power of two. 

This solution can have side effects – increasing the region size reduces the number of regions available so you 

need to be careful and run extra set of tests to see whether or not you actually improved the throughput or 

latency of the application. 

A more time-consuming but potentially better solution would be to understand whether or not the application can 

limit the size of allocations. The best tools for the job in this case are profilers. They can give you information 

about humongous objects by showing their allocation sources with stack traces. 

Conclusion 

With the enormous number of possible applications that one may run on the JVM, coupled with the hundreds of 

JVM configuration parameters that one may tweak for GC, there are astoundingly many ways in which the GC 

may impact your application’s performance. 

Therefore, there is no real silver bullet approach to tuning the JVM to match the performance goals you have to 

fulfill. What we have tried to do here is walk you through some common (and not so common) examples to give 

you a general idea of how problems like these can be approached. Coupled with the tooling overview and with 

a solid understanding of how the GC works, you have all the chances of successfully tuning garbage collection 

to boost the performance of your application. 
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